On the amenable subalgebras of group von Neumann algebras

Tattwamasi Amrutam, Yair Hartman, Hanna Oppelmayer

Research output: Contribution to journalArticlepeer-review

Abstract

We approach the study of sub-von Neumann algebras of the group von Neumann algebra L(Γ) for countable groups Γ from a dynamical perspective. It is shown that L(Γ) admits a maximal invariant amenable subalgebra. The notion of invariant probability measures (IRAs) on the space of subalgebras is introduced, analogous to the concept of Invariant Random Subgroups. And it is shown that amenable IRAs are supported on the maximal amenable invariant subalgebra.

Original languageAmerican English
Article number110718
JournalJournal of Functional Analysis
Volume288
Issue number2
DOIs
StatePublished - 15 Jan 2025

Keywords

  • Effros topology
  • Group von Neumann algebra
  • Invariant random algebras

All Science Journal Classification (ASJC) codes

  • Analysis

Cite this