On natural inflation and moduli stabilisation in string theory

Research output: Contribution to journalArticlepeer-review


Abstract: Natural inflation relies on the existence of an axion decay constant which is super-Planckian. In string theory only sub-Planckian axion decay constants have been found in any controlled regime. However in field theory it is possible to generate an enhanced super-Planckian decay constant by an appropriate aligned mixing between axions with individual sub-Planckian decay constants. We study the possibility of such a mechanism in string theory. In particular we construct a new realisation of an alignment scenario in type IIA string theory compactifications on a Calabi-Yau where the alignment is induced through fluxes. Within field theory the original decay constants are taken to be independent of the parameters which induce the alignment. In string theory however they are moduli dependent quantities and so interact gravitationally with the physics responsible for the mixing. We show that this gravitational effect of the fluxes on the moduli can precisely cancel any enhancement of the effective decay constant. This censorship of an effective super-Planckian decay constant depends on detailed properties of Calabi-Yau moduli spaces and occurs for all the examples and classes that we study. We expand these results to a general superpotential assuming only that the axion superpartners are fixed supersymmetrically and are able to show for a large class of Calabi-Yau manifolds, but not all, that the cancellation effect occurs and is independent of the superpotential. We also study simple models where the moduli are fixed non-supersymmetrically and find that similar cancellation behaviour can emerge. Finally we make some comments on a possible generalisation to axion monodromy inflation models.

Original languageEnglish
Article number188
JournalJournal of High Energy Physics
Issue number10
StatePublished - 1 Oct 2015
Externally publishedYes


  • Cosmology of Theories beyond the SM
  • Flux compactifications
  • Global Sym-metries

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics


Dive into the research topics of 'On natural inflation and moduli stabilisation in string theory'. Together they form a unique fingerprint.

Cite this