On infinite-width hypernetworks

Etai Littwin, Tomer Galanti, Lior Wolf, Greg Yang

Research output: Contribution to journalConference articlepeer-review


Hypernetworks are architectures that produce the weights of a task-specific primary network. A notable application of hypernetworks in the recent literature involves learning to output functional representations. In these scenarios, the hypernetwork learns a representation corresponding to the weights of a shallow MLP, which typically encodes shape or image information. While such representations have seen considerable success in practice, they remain lacking in the theoretical guarantees in the wide regime of the standard architectures. In this work, we study wide over-parameterized hypernetworks. We show that unlike typical architectures, infinitely wide hypernetworks do not guarantee convergence to a global minima under gradient descent. We further show that convexity can be achieved by increasing the dimensionality of the hypernetwork’s output, to represent wide MLPs. In the dually infinite-width regime, we identify the functional priors of these architectures by deriving their corresponding GP and NTK kernels, the latter of which we refer to as the hyperkernel. As part of this study, we make a mathematical contribution by deriving tight bounds on high order Taylor expansion terms of standard fully connected ReLU networks.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: 6 Dec 202012 Dec 2020

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Cite this