On empirical cumulant generating functions of code lengths for individual sequences

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider the problem of lossless compression of individual sequences using finite-state (FS) machines, from the perspective of the best achievable empirical cumulant generating function (CGF) of the code length, i.e., the normalized logarithm of the empirical average of the exponentiated code length. Since the probabilistic CGF is minimized in terms of the Renyi entropy of the source, one of the motivations of this study is to derive an individual-sequence analogue of the Renyi entropy, in the same way that the FS compressibility is the individual-sequence counterpart of the Shannon entropy. We consider the CGF of the code-length both from the perspective of fixed-to-variable (F-V) length coding and the perspective of variable-to-variable (V-V) length coding, where the latter turns out to yield a better result, that coincides with the FS compressibility. We also extend our results to compression with side information, available at both the encoder and decoder. In this case, the V-V version no longer coincides with the FS compressibility, but results in a different complexity measure.

Original languageEnglish
Title of host publication2017 IEEE International Symposium on Information Theory, ISIT 2017
Pages1500-1504
Number of pages5
ISBN (Electronic)9781509040964
DOIs
StatePublished - 9 Aug 2017
Event2017 IEEE International Symposium on Information Theory, ISIT 2017 - Aachen, Germany
Duration: 25 Jun 201730 Jun 2017

Publication series

NameIEEE International Symposium on Information Theory - Proceedings

Conference

Conference2017 IEEE International Symposium on Information Theory, ISIT 2017
Country/TerritoryGermany
CityAachen
Period25/06/1730/06/17

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Cite this