Abstract
Let π: M→ B be a Riemannian submersion of two compact smooth Riemannian manifolds, B is connected. Let M(ε) denote the manifold M equipped with the new Riemannian metric which is obtained from the original one by multiplying by ε along the vertical subspaces (i.e. along the fibers) and keeping unchanged along the (orthogonal to them) horizontal subspaces. Let Vi(M(ε)) denote the ith intrinsic volume. The main result of this note says that lim ε→+Vi(M(ε)) = χ(Z) Vi(B) where χ(Z) denotes the Euler characteristic of a fiber of π.
Original language | English |
---|---|
Article number | 23 |
Journal | Journal of Geometry |
Volume | 113 |
Issue number | 1 |
DOIs | |
State | Published - Apr 2022 |
All Science Journal Classification (ASJC) codes
- Geometry and Topology