On conformal spectral gap estimates of the Dirichlet-Laplacian

V. Gol'dshtein, V. Pchelintsev, A. Ukhlov

Research output: Contribution to journalArticlepeer-review

Abstract

We study spectral stability estimates of the Dirichlet eigenvalues of the Laplacian in nonconvex domains Ω ⊂ ℝ2. With the help of these estimates, we obtain asymptotically sharp inequalities of ratios of eigenvalues in the framework of the Payne-Pólya-Weinberger inequalities. These estimates are equivalent to spectral gap estimates of the Dirichlet eigenvalues of the Laplacian in nonconvex domains in terms of conformal (hyperbolic) geometry.

Original languageAmerican English
Pages (from-to)325-335
Number of pages11
JournalSt. Petersburg Mathematical Journal
Volume31
Issue number2
DOIs
StatePublished - 1 Jan 2020

Keywords

  • Conformal mappings
  • Elliptic equations
  • Sobolev spaces

All Science Journal Classification (ASJC) codes

  • Analysis
  • Algebra and Number Theory
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'On conformal spectral gap estimates of the Dirichlet-Laplacian'. Together they form a unique fingerprint.

Cite this