Novel transcript discovery expands the repertoire of pathologically-associated, long non-coding rnas in vascular smooth muscle cells

Matthew Bennett, Igor Ulitsky, Iraide Alloza, Koen Vandenbroeck, Vladislav Miscianinov, Amira Dia Mahmoud, Margaret Ballantyne, Julie Rodor, Andrew H. Baker

Research output: Contribution to journalArticlepeer-review

Abstract

Vascular smooth muscle cells (VSMCs) provide vital contractile force within blood vessel walls, yet can also propagate cardiovascular pathologies through proliferative and pro-inflammatory activities. Such phenotypes are driven, in part, by the diverse effects of long non-coding RNAs (lncRNAs) on gene expression. However, lncRNA characterisation in VSMCs in pathological states is hampered by incomplete lncRNA representation in reference annotation. We aimed to improve lncRNA representation in such contexts by assembling non-reference transcripts in RNA sequencing datasets describing VSMCs stimulated in vitro with cytokines, growth factors, or mechanical stress, as well as those isolated from atherosclerotic plaques. All transcripts were then subjected to a rigorous lncRNA prediction pipeline. We substantially improved coverage of lncRNAs responding to pro-mitogenic stimuli, with non-reference lncRNAs contributing 21–32% for each dataset. We also demonstrate non-reference lncRNAs were biased towards enriched expression within VSMCs, and transcription from enhancer sites, suggesting particular relevance to VSMC processes, and the regulation of neighbouring protein-coding genes. Both VSMC-enriched and enhancer-transcribed lncRNAs were large components of lncRNAs responding to pathological stimuli, yet without novel transcript discovery 33–46% of these lncRNAs would remain hidden. Our comprehensive VSMC lncRNA repertoire allows proper prioritisation of candidates for characterisation and exemplifies a strategy to broaden our knowledge of lncRNA across a range of disease states.

Original languageEnglish
Article number1484
Pages (from-to)1-16
Number of pages16
JournalINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES
Volume22
Issue number3
DOIs
StatePublished - 1 Feb 2021

All Science Journal Classification (ASJC) codes

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Novel transcript discovery expands the repertoire of pathologically-associated, long non-coding rnas in vascular smooth muscle cells'. Together they form a unique fingerprint.

Cite this