Abstract
Superconductivity serves as a unique solid-state platform for electron interference at a device-relevant lengthscale, which is essential for quantum information and sensing technologies. As opposed to semiconducting transistors that are operated by voltage biasing at the nanometer scale, superconductive quantum devices cannot sustain voltage and are operated with magnetic fields, which impose a large device footprint, hindering miniaturization and scalability. Here, we introduce a system of superconducting materials and devices that have a common interface with a ferroelectric layer. An amorphous superconductor was chosen for reducing substrate-induced misfit strain and for allowing low-temperature growth. The common quantum pseudowavefunction of the superconducting electrons was controlled by the nonvolatile switchable polarization of the ferroelectric by means of voltage biasing. A controllable change of 21% in the critical temperature was demonstrated for a continuous film geometry. Moreover, a controllable change of 54% in the switching current of a superconducting quantum interference device was demonstrated. The ability to voltage bias superconducting devices together with the nonvolatile nature of this system paves the way to quantum-based memory devices.
Original language | English |
---|---|
Article number | 112601 |
Journal | Applied Physics Letters |
Volume | 119 |
Issue number | 11 |
DOIs | |
State | Published - 13 Sep 2021 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy (miscellaneous)