Nonparametric Canonical Correlation Analysis

Tomer Michaeli, VVeiran Wang, Karen Livescu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Canonical correlation analysis (CCA) is a classical representation learning technique for finding correlated variables in multi-view data. Several nonlinear extensions of the original linear CCA have been proposed, including kernel and deep neural network methods. These approaches seek maximally correlated projections among families of functions, which the user specifies (by choos-ing a kernel or neural network structure), and are computationally demanding. Interestingly, the theory of nonlinear CCA. without functional restrictions. had been studied in the population setting by Lancaster already in the 1950s, but these results have not inspired practical algorithms. We revisit Lancaster's theory to devise a practical algorithm for nonparametric CCA (NCCA). Specifically, we show that the solution can be expressed in terms of the singular value decomposition of a certain operator associated with the joint density of the views. Thus, by estimating the population density from data, NCCA reduces to solving an eigenvalue system, superficially like kernel CCA but, importantly, without requiring the inversion of any kernel matrix. We also derive a partially linear CCA (PLCCA) variant in which one of the views undergoes a linear projection while the other is nonparametric. Using a kernel density estimate based on a small number of nearest neighbors, our NCCA and PLCCA algorithms are memory-efficient, often run much faster, and perform better than kernel CCA and comparable to deep CCA.

Original languageEnglish
Title of host publication33rd International Conference on Machine Learning, ICML 2016
EditorsKilian Q. Weinberger, Maria Florina Balcan
Pages2906-2916
Number of pages11
ISBN (Electronic)9781510829008
StatePublished - 2016
Event33rd International Conference on Machine Learning, ICML 2016 - New York City, United States
Duration: 19 Jun 201624 Jun 2016

Publication series

Name33rd International Conference on Machine Learning, ICML 2016
Volume4

Conference

Conference33rd International Conference on Machine Learning, ICML 2016
Country/TerritoryUnited States
CityNew York City
Period19/06/1624/06/16

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Nonparametric Canonical Correlation Analysis'. Together they form a unique fingerprint.

Cite this