Nonparametric blind super-resolution

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Super resolution (SR) algorithms typically assume that the blur kernel is known (either the Point Spread Function 'PSF' of the camera, or some default low-pass filter, e.g. a Gaussian). However, the performance of SR methods significantly deteriorates when the assumed blur kernel deviates from the true one. We propose a general framework for 'blind' super resolution. In particular, we show that: (i) Unlike the common belief, the PSF of the camera is the wrong blur kernel to use in SR algorithms. (ii) We show how the correct SR blur kernel can be recovered directly from the low-resolution image. This is done by exploiting the inherent recurrence property of small natural image patches (either internally within the same image, or externally in a collection of other natural images). In particular, we show that recurrence of small patches across scales of the low-res image (which forms the basis for single-image SR), can also be used for estimating the optimal blur kernel. This leads to significant improvement in SR results.

Original languageEnglish
Title of host publicationProceedings - 2013 IEEE International Conference on Computer Vision, ICCV 2013
Pages945-952
Number of pages8
DOIs
StatePublished - 2013
Event2013 14th IEEE International Conference on Computer Vision, ICCV 2013 - Sydney, NSW, Australia
Duration: 1 Dec 20138 Dec 2013

Publication series

NameProceedings of the IEEE International Conference on Computer Vision

Conference

Conference2013 14th IEEE International Conference on Computer Vision, ICCV 2013
Country/TerritoryAustralia
CitySydney, NSW
Period1/12/138/12/13

All Science Journal Classification (ASJC) codes

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Nonparametric blind super-resolution'. Together they form a unique fingerprint.

Cite this