TY - JOUR
T1 - Nonlinear spectral management
T2 - Linearization of the lossless fiber channel
AU - Prilepsky, Jaroslaw E.
AU - Derevyanko, Stanislav A.
AU - Turitsyn, Sergei K.
N1 - EPSRC [EP/J017582/1]; Russian Ministry of Education and Science, European Research Council; Marie Curie IRSESWe would like to thank Keith Blow and Ildar Gabitov for valuable discussions. The work was supported by the EPSRC project UNLOC (Unlocking the Capacity of Optical Communications) EP/J017582/1. The support of the Russian Ministry of Education and Science, European Research Council and Marie Curie IRSES program is also acknowledged.
PY - 2013/10/7
Y1 - 2013/10/7
N2 - Using the integrable nonlinear Schrodinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called eigenvalue communication idea first presented in A. Hasegawa, T. Nyu, J. Lightwave Technol. 11, 395 (1993). The key feature of the nonlinear Fourier transform (inverse scattering transform) method is that for the NLSE, any input signal can be decomposed into the so-called scattering data (nonlinear spectrum), which evolve in a trivial manner, similar to the evolution of Fourier components in linear equations. We consider here a practically important weakly nonlinear transmission regime and propose a general method of the effective encoding/modulation of the nonlinear spectrum: The machinery of our approach is based on the recursive Fourier-type integration of the input profile and, thus, can be considered for electronic or all-optical implementations. We also present a novel concept of nonlinear spectral pre-compensation, or in other terms, an effective nonlinear spectral pre-equalization. The proposed general technique is then illustrated through particular analytical results available for the transmission of a segment of the orthogonal frequency division multiplexing (OFDM) formatted pattern, and through WDM input based on Gaussian pulses. Finally, the robustness of the method against the amplifier spontaneous emission is demonstrated, and the general numerical complexity of the nonlinear spectrum usage is discussed.
AB - Using the integrable nonlinear Schrodinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called eigenvalue communication idea first presented in A. Hasegawa, T. Nyu, J. Lightwave Technol. 11, 395 (1993). The key feature of the nonlinear Fourier transform (inverse scattering transform) method is that for the NLSE, any input signal can be decomposed into the so-called scattering data (nonlinear spectrum), which evolve in a trivial manner, similar to the evolution of Fourier components in linear equations. We consider here a practically important weakly nonlinear transmission regime and propose a general method of the effective encoding/modulation of the nonlinear spectrum: The machinery of our approach is based on the recursive Fourier-type integration of the input profile and, thus, can be considered for electronic or all-optical implementations. We also present a novel concept of nonlinear spectral pre-compensation, or in other terms, an effective nonlinear spectral pre-equalization. The proposed general technique is then illustrated through particular analytical results available for the transmission of a segment of the orthogonal frequency division multiplexing (OFDM) formatted pattern, and through WDM input based on Gaussian pulses. Finally, the robustness of the method against the amplifier spontaneous emission is demonstrated, and the general numerical complexity of the nonlinear spectrum usage is discussed.
UR - http://www.scopus.com/inward/record.url?scp=84885457956&partnerID=8YFLogxK
U2 - 10.1364/OE.21.024344
DO - 10.1364/OE.21.024344
M3 - Article
C2 - 24104344
SN - 1094-4087
VL - 21
SP - 24344
EP - 24367
JO - Optics Express
JF - Optics Express
IS - 20
ER -