Non-relativistic radiation-mediated shock breakouts. I. Exact bolometric planar breakout solutions

Nir Sapir, Boaz Katz, Eli Waxman

Research output: Contribution to journalArticlepeer-review

Abstract

The problem of a non-steady planar radiation-mediated shock (RMS) breaking out from a surface with a power-law density profile, ρσxn , is numerically solved in the approximation of diffusion with constant opacity. For an appropriate choice of time, length, and energy scales, determined by the breakout opacity, velocity, and density, the solution is universal, i.e., depends only on the density power-law index n. The resulting luminosity depends weakly on the value of n. An approximate analytic solution, based on the self-similar hydrodynamic solutions and on the steady RMS solutions, is constructed and shown to agree with the numerical solutions as long as the shock is far from the surface, τ ≫ c/v sh. Approximate analytic expressions, calibrated based on the exact solutions, are provided, which describe the escaping luminosity as a function of time. These results can be used to calculate the bolometric properties of the bursts of radiation produced during supernova shock breakouts. For completeness, we also use the exact breakout solutions to provide an analytic approximation for the maximum surface temperature for fast (v sh ≳ 0.1) non-thermal breakouts and show that it is a few times smaller than inferred based on steady state RMS solutions.

Original languageEnglish
Article number36
JournalAstrophysical Journal
Volume742
Issue number1
DOIs
StatePublished - 20 Nov 2011

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Non-relativistic radiation-mediated shock breakouts. I. Exact bolometric planar breakout solutions'. Together they form a unique fingerprint.

Cite this