Abstract
Recent results of N-body simulations have shown that current theoretical models are not able to correctly predict the amplitude of the scale-dependent halo bias induced by primordial non-Gaussianity, for models going beyond the simplest, local quadratic case. Motivated by these discrepancies, we carefully examine three theoretical approaches based on (1) the statistics of thresholded regions, (2) a peak-background split method based on separation of scales, and (3) a peak-background split method using the conditional mass function. We first demonstrate that the statistics of thresholded regions, which is shown to be equivalent at leading order to a local bias expansion, cannot explain the mass-dependent deviation between theory and N-body simulations. In the two formulations of the peak-background split on the other hand, we identify an important, but previously overlooked, correction to the non-Gaussian bias that strongly depends on halo mass. This new term is in general significant for any primordial non-Gaussianity going beyond the simplest local fNL model. In a separate paper (to be published in PRD rapid communication), the authors compare these new theoretical predictions with N-body simulations, showing good agreement for all simulated types of non-Gaussianity.
Original language | English |
---|---|
Article number | 063512 |
Journal | Physical Review D - Particles, Fields, Gravitation and Cosmology |
Volume | 84 |
Issue number | 6 |
DOIs | |
State | Published - 14 Sep 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Nuclear and High Energy Physics
- Physics and Astronomy (miscellaneous)