TY - GEN
T1 - Neural attention for learning to rank questions in community question answering
AU - Romeo, Salvatore
AU - Da San Martino, Giovanni
AU - Barrón-Cedeño, Alberto
AU - Moschitti, Alessandro
AU - Belinkov, Yonatan
AU - Hsu, Wei Ning
AU - Zhang, Yu
AU - Mohtarami, Mitra
AU - Glass, James
N1 - Publisher Copyright: © 1963-2018 ACL.
PY - 2016
Y1 - 2016
N2 - In real-world data, e.g., from Web forums, text is often contaminated with redundant or irrelevant content, which leads to introducing noise in machine learning algorithms. In this paper, we apply Long Short-Lerm Memory networks with an attention mechanism, which can select important parts of text for the task of similar question retrieval from community Question Answering (cQA) forums. In particular, we use the attention weights for both selecting entire sentences and their subparts, i.e., word/chunk, from shallow syntactic trees. More interestingly, we apply tree kernels to the filtered text representations, thus exploiting the implicit features of the subtree space for learning question reranking. Our results show that the attention-based pruning allows for achieving the top position in the cQA challenge of SemEval 2016, with a relatively large gap from the other participants while greatly decreasing running time.
AB - In real-world data, e.g., from Web forums, text is often contaminated with redundant or irrelevant content, which leads to introducing noise in machine learning algorithms. In this paper, we apply Long Short-Lerm Memory networks with an attention mechanism, which can select important parts of text for the task of similar question retrieval from community Question Answering (cQA) forums. In particular, we use the attention weights for both selecting entire sentences and their subparts, i.e., word/chunk, from shallow syntactic trees. More interestingly, we apply tree kernels to the filtered text representations, thus exploiting the implicit features of the subtree space for learning question reranking. Our results show that the attention-based pruning allows for achieving the top position in the cQA challenge of SemEval 2016, with a relatively large gap from the other participants while greatly decreasing running time.
UR - http://www.scopus.com/inward/record.url?scp=85054999113&partnerID=8YFLogxK
M3 - منشور من مؤتمر
SN - 9784879747020
T3 - COLING 2016 - 26th International Conference on Computational Linguistics, Proceedings of COLING 2016: Technical Papers
SP - 1734
EP - 1745
BT - COLING 2016 - 26th International Conference on Computational Linguistics, Proceedings of COLING 2016
PB - Association for Computational Linguistics, ACL Anthology
T2 - 26th International Conference on Computational Linguistics, COLING 2016
Y2 - 11 December 2016 through 16 December 2016
ER -