Abstract
Deep learning techniques have recently demonstrated outstanding success when used for Power Quality Disturbance (PQD) classification. However, a core obstacle is that deep neural networks (DNN)s are complex models, and their architecture is designed using trial and error processes. Accordingly, the problem of finding the optimal architecture can be considered as a problem that consists of high-dimensional solutions. Meanwhile, in the last couple of years, Neural Architecture Search (NAS) techniques have been developed to efficiently find the best possible performance architecture for a specific task. In this light, the goal of this research is to develop a method to find optimal PQD classifiers using the NAS technique, based on an evolutionary algorithm. This method can converge efficiently to an optimal DNN architecture. Thus, a classifier that achieves high accuracy for PQDs classification is provided using limited resources and with minimal human intervention. This idea is demonstrated on two different DNN typologies—convolutional neural networks (CNN) and Bi-directional long short-term memory (Bi-LSTM). By adopting this method, the results of the generated PQD classifiers are more accurate when compared to recently developed classifiers.
Original language | English |
---|---|
Article number | 109574 |
Journal | Electric Power Systems Research |
Volume | 223 |
DOIs | |
State | Published - Oct 2023 |
Keywords
- Deep-learning
- Genetic algorithm
- NAS
- Neural architecture search
- PQD
- Power quality
All Science Journal Classification (ASJC) codes
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering