Networked control under round-robin protocol: Multiple sensors and non-small communication delays

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The existing results on Networked Control Systems (NCSs) in the presence of variable sampling intervals, communication delays and scheduling protocols (in the frameworks of hybrid and discrete-time systems) are confined to small communication delays (that are smaller than the sampling intervals). Recently the time-delay approach was suggested to NCSs with N = 2 sensors under Round-Robin (RR) and Try-Once-Discard (TOD) protocols [1], [2], where communication delays were allowed to be non-small. The objective of this paper is to extend the time-delay approach to NCSs under RR protocol with a general number N ≥ 2 of sensor nodes. To derive simple conditions we suggest a novel hybrid system model for the closed-loop system with time-varying delays in the dynamics and in the reset conditions. A new Lyapunov-Krasovskii method is introduced for the exponential stability of the resulting delayed hybrid systems. For the case of two sensors, the resulting conditions are computationally simpler than the existing ones of [1]. The communication delays are allowed to be greater than the sampling intervals. Polytopic type uncertainties in the system model can be easily included in the analysis. The efficiency of the time-delay approach is illustrated on the example of uncertain cart-pendulum.

Original languageEnglish
Title of host publication53rd IEEE Conference on Decision and Control,CDC 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6062-6067
Number of pages6
EditionFebruary
ISBN (Electronic)9781479977468
DOIs
StatePublished - 2014
Event2014 53rd IEEE Annual Conference on Decision and Control, CDC 2014 - Los Angeles, United States
Duration: 15 Dec 201417 Dec 2014

Publication series

NameProceedings of the IEEE Conference on Decision and Control
NumberFebruary
Volume2015-February

Conference

Conference2014 53rd IEEE Annual Conference on Decision and Control, CDC 2014
Country/TerritoryUnited States
CityLos Angeles
Period15/12/1417/12/14

Keywords

  • Lyapunov-Krasovskii method
  • hybrid system
  • networked control systems
  • scheduling protocol
  • time-delay

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Modelling and Simulation
  • Control and Optimization

Fingerprint

Dive into the research topics of 'Networked control under round-robin protocol: Multiple sensors and non-small communication delays'. Together they form a unique fingerprint.

Cite this