Abstract
The neonatal period is considered to be essential for neurodevelopment and wellbeing throughout the life span, yet little is known about brain-behavior relationships in the neonatal period. The aim of this study was to evaluate the association between neonatal sensory-motor regulation and white-matter (WM) integrity of major fiber tracts in the neonatal period. We hypothesized that WM integrity of sensory-motor systems would predict neurobehavioral maturation during the first month of life. Forty-nine premature neonates underwent magnetic-resonance-imaging at term. Diffusion-tensor-imaging analysis was performed in major WM tracts along with repeated neonatal neurobehavioral evaluations assessing sensory reactivity and motor regulation.Difficulties in one or more behavioral sub-category, mostly in auditory and visual attention, hypotonicity and jitteriness, were documented in 78.3% infants at term. Sixty-six percent of infants experienced difficulties, mostly in auditory attention, head-neck control, hypotonicity and motor asymmetry, at 44 weeks.Attention difficulties were associated with reduced integrity of cerebral and superior cerebellar peduncles; while tonicity was associated with reduced integrity of the corpus-callosum and inferior-posterior tracts. Overall, results showed that early maturing tracts were related with the degree of typicality of sensory reactivity status while late maturing tracts were related with the degree of typicality of tonic regulation. WM integrity and maturation factors explained 40.2% of the variance in neurobehavior at 44 weeks.This study suggests that in preterm neonates, deviant sensory-motor reactivity can be detected very early in development in manners that are related to lower integrity/maturational level of early and late maturing fiber tracts.
Original language | English |
---|---|
Pages (from-to) | 209-219 |
Number of pages | 11 |
Journal | Neuropsychologia |
Volume | 62 |
Issue number | 1 |
DOIs | |
State | Published - Sep 2014 |
Keywords
- DTI
- Neonatal
- Preterm
- Sensory-motor
- White matter
All Science Journal Classification (ASJC) codes
- Experimental and Cognitive Psychology
- Cognitive Neuroscience
- Behavioral Neuroscience