Nanowire-mediated delivery enables functional interrogation of primary immune cells: Application to the analysis of chronic lymphocytic leukemia

Alex K. Shalek, Jellert T. Gaublomme, Lili Wang, Nir Yosef, Nicolas Chevrier, Mette S. Andersen, Jacob T. Robinson, Nathalie Pochet, Donna Neuberg, Rona S. Gertner, Ido Amit, Jennifer R. Brown, Nir Hacohen, Aviv Regev, Catherine J. Wu, Hongkun Park

Research output: Contribution to journalArticlepeer-review

Abstract

A circuit level understanding of immune cells and hematological cancers has been severely impeded by a lack of techniques that enable intracellular perturbation without significantly altering cell viability and function. Here, we demonstrate that vertical silicon nanowires (NWs) enable gene-specific manipulation of diverse murine and human immune cells with negligible toxicity. To illustrate the power of the technique, we then apply NW-mediated gene silencing to investigate the role of the Wnt signaling pathway in chronic lymphocytic leukemia (CLL). Remarkably, CLL-B cells from different patients exhibit tremendous heterogeneity in their response to the knockdown of a single gene, LEF1. This functional heterogeneity defines three distinct patient groups not discernible by conventional CLL cytogenetic markers and provides a prognostic indicator for patients time to first therapy. Analyses of gene expression signatures associated with these functional patient subgroups reveal unique insights into the underlying molecular basis for disease heterogeneity. Overall, our findings suggest a functional classification that can potentially guide the selection of patient-specific therapies in CLL and highlight the opportunities for nanotechnology to drive biological inquiry.

Original languageEnglish
Pages (from-to)6498-6504
Number of pages7
JournalNano Letters
Volume12
Issue number12
Early online date28 Nov 2012
DOIs
StatePublished - 12 Dec 2012
Externally publishedYes

Keywords

  • Nanowires
  • chronic lymphocytic leukemia
  • delivery
  • immune cells
  • perturbation

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • Condensed Matter Physics
  • Mechanical Engineering
  • Bioengineering
  • General Materials Science

Cite this