Abstract
Intra-cellular active transport by native cargos is ubiquitous. We investigate the motion of spherical nano-particles (NPs) grafted with flexible polymers that end with a nuclear localization signal peptide. This peptide allows the recruitment of several mammalian dynein motors from cyto-plasmic extracts. To determine how motor–motor interactions influenced motility on the single mi-crotubule level, we conducted bead-motility assays incorporating surface adsorbed microtubules and combined them with model simulations that were based on the properties of a single dynein. The experimental and simulation results revealed long time trajectories: when the number of NP-ligated motors Nm increased, run-times and run-lengths were enhanced and mean velocities were somewhat decreased. Moreover, the dependence of the velocity on run-time followed a universal curve, regardless of the system composition. Model simulations also demonstrated left- and right-handed helical motion and revealed self-regulation of the number of microtubule-bound, actively transporting dynein motors. This number was stochastic along trajectories and was distributed mainly between one, two, and three motors, regardless of Nm. We propose that this self-regulation allows our synthetic NPs to achieve persistent motion that is associated with major helicity. Such a helical motion might affect obstacle bypassing, which can influence active transport efficiency when facing the crowded environment of the cell.
Original language | American English |
---|---|
Article number | 8893 |
Journal | INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES |
Volume | 22 |
Issue number | 16 |
DOIs | |
State | Published - 2 Aug 2021 |
Keywords
- Active transport
- Monte-Carlo simulations
- Motility assays
- Multi-motor complex
- Nano-particles
- Single particle tracking
All Science Journal Classification (ASJC) codes
- Catalysis
- Molecular Biology
- Spectroscopy
- Computer Science Applications
- Physical and Theoretical Chemistry
- Organic Chemistry
- Inorganic Chemistry