Abstract
Vascular endothelial growth factor A (VEGF-A) is a secreted protein that stimulates angiogenesis in response to hypoxia. Under hypoxic conditions, a non-canonical long isoform called L-VEGF is concomitantly expressed with VEGF-A. Once translated, L-VEGF is proteolytically cleaved to generate N-VEGF and VEGF-A. Interestingly, while VEGF-A is secreted and affects the surrounding cells, N-VEGF is mobilized to the nucleus. This suggests that N-VEGF participates in transcriptional response to hypoxia. In this study, we performed a series of complementary experiments to examine the functional role of N-VEGF. Strikingly, we found that the mere expression of N-VEGF followed by its hypoxia-independent mobilization to the nucleus was sufficient to induce key genes associated with angiogenesis, such as Hif1α, VEGF-A isoforms, as well as genes associated with cell survival under hypoxia. Complementarily, when N-VEGF was genetically depleted, key hypoxia-induced genes were downregulated and cells were significantly susceptible to hypoxia-mediated apoptosis. This is the first report of N-VEGF serving as an autoregulatory arm of VEGF-A. Further experiments will be needed to determine the role of N-VEGF in cancer and embryogenesis.
Original language | English |
---|---|
Article number | 1289 |
Journal | Cells |
Volume | 11 |
Issue number | 8 |
DOIs | |
State | Published - 1 Apr 2022 |
Keywords
- VEGF-A
- angiogenesis
- hypoxia
All Science Journal Classification (ASJC) codes
- General Biochemistry,Genetics and Molecular Biology