TY - JOUR
T1 - N-terminal arginylation generates a bimodal degron that modulates autophagic proteolysis
AU - Yoo, Young Dong
AU - Mun, Su Ran
AU - Ji, Chang Hoon
AU - Sung, Ki Woon
AU - Kang, Keum Young
AU - Heo, Ah Jung
AU - Lee, Su Hyun
AU - An, Jee Young
AU - Hwang, Joonsung
AU - Xi, Xiang-Qun
AU - Ciechanover, Aaron
AU - Kim, Bo Yeon
AU - Kwon, Yong Tae
AU - Xie, Xiang Qun
N1 - Publisher Copyright: © 2018 National Academy of Sciences. All Rights Reserved.
PY - 2018/3/20
Y1 - 2018/3/20
N2 - The conjugation of amino acids to the protein N termini is universally observed in eukaryotes and prokaryotes, yet its functions remain poorly understood. In eukaryotes, the amino acid L-arginine (L-Arg) is conjugated to N-terminal Asp (Nt-Asp), Glu, Gln, Asn, and Cys, directly or associated with posttranslational modifications. Following Ntarginylation, the Nt-Arg is recognized by UBR boxes of N-recognins such as UBR1, UBR2, UBR4/p600, and UBR5/EDD, leading to substrate ubiquitination and proteasomal degradation via the N-end rule pathway. It has been a mystery, however, why studies for the past five decades identified only a handful of Nt-arginylated substrates in mammals, although five of 20 principal amino acids are eligible for arginylation. Here, we show that the Nt-Arg functions as a bimodal degron that directs substrates to either the ubiquitin (Ub)- proteasome system (UPS) or macroautophagy depending on physiological states. In normal conditions, the arginylated forms of proteolytic cleavage products, D101-CDC6 and D1156-BRCA1, are targeted to UBR box-containing N-recognins and degraded by the proteasome. However, when proteostasis by the UPS is perturbed, their Nt-Arg redirects these otherwise cellularwastes tomacroautophagy through its binding to the ZZ domain of the autophagic adaptor p62/STQSM/ Sequestosome-1. Upon binding to the Nt-Arg, p62 acts as an autophagic N-recognin that undergoes self-polymerization, facilitating cargo collection and lysosomal degradation of p62-cargo complexes. A chemical mimic of Nt-Arg redirects Ub-conjugated substrates from the UPS to macroautophagy and promotes their lysosomal degradation. Our results suggest that the Nt-Arg proteome of arginylated proteins contributes to reprogramming global proteolytic flux under stresses.
AB - The conjugation of amino acids to the protein N termini is universally observed in eukaryotes and prokaryotes, yet its functions remain poorly understood. In eukaryotes, the amino acid L-arginine (L-Arg) is conjugated to N-terminal Asp (Nt-Asp), Glu, Gln, Asn, and Cys, directly or associated with posttranslational modifications. Following Ntarginylation, the Nt-Arg is recognized by UBR boxes of N-recognins such as UBR1, UBR2, UBR4/p600, and UBR5/EDD, leading to substrate ubiquitination and proteasomal degradation via the N-end rule pathway. It has been a mystery, however, why studies for the past five decades identified only a handful of Nt-arginylated substrates in mammals, although five of 20 principal amino acids are eligible for arginylation. Here, we show that the Nt-Arg functions as a bimodal degron that directs substrates to either the ubiquitin (Ub)- proteasome system (UPS) or macroautophagy depending on physiological states. In normal conditions, the arginylated forms of proteolytic cleavage products, D101-CDC6 and D1156-BRCA1, are targeted to UBR box-containing N-recognins and degraded by the proteasome. However, when proteostasis by the UPS is perturbed, their Nt-Arg redirects these otherwise cellularwastes tomacroautophagy through its binding to the ZZ domain of the autophagic adaptor p62/STQSM/ Sequestosome-1. Upon binding to the Nt-Arg, p62 acts as an autophagic N-recognin that undergoes self-polymerization, facilitating cargo collection and lysosomal degradation of p62-cargo complexes. A chemical mimic of Nt-Arg redirects Ub-conjugated substrates from the UPS to macroautophagy and promotes their lysosomal degradation. Our results suggest that the Nt-Arg proteome of arginylated proteins contributes to reprogramming global proteolytic flux under stresses.
KW - ATE1 R-transferase
KW - N-end rule pathway
KW - macroautophagy
KW - p62/STQSM/Sequestosome-1
KW - ubiquitin-proteasome system
UR - http://www.scopus.com/inward/record.url?scp=85044303638&partnerID=8YFLogxK
U2 - https://doi.org/10.1073/pnas.1719110115
DO - https://doi.org/10.1073/pnas.1719110115
M3 - مقالة
SN - 0027-8424
VL - 115
SP - E2716-E2724
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 12
ER -