@inproceedings{2a9dfdfa1c8c462fac3e4662ea4c76cf,
title = "My fair bandit: Distributed learning of max-min fairness with multi-player bandits",
abstract = "Consider N cooperative but non-communicating players where each plays one out of M arms for T turns. Players have different utilities for each arm, representable as an N × M matrix. These utilities are unknown to the players. In each turn players select an arm and receive a noisy observation of their utility for it. However, if any other players selected the same arm that turn, all colliding players will receive zero utility due to the conflict. No other communication or coordination between the players is possible. Our goal is to design a distributed algorithm that learns the matching between players and arms that achieves max-min fairness while minimizing the regret. We present an algorithm and prove that it is regret optimal up to a log log T factor. This is the first max-min fairness multi-player bandit algorithm with (near) order optimal regret.",
author = "Ilai Bistritz and Baharav, {Tavor Z.} and Amir Leshem and Nicholas Bambos",
note = "Publisher Copyright: {\textcopyright} 2020 37th International Conference on Machine Learning, ICML 2020. All rights reserved.; 37th International Conference on Machine Learning, ICML 2020 ; Conference date: 13-07-2020 Through 18-07-2020",
year = "2020",
language = "الإنجليزيّة",
series = "37th International Conference on Machine Learning, ICML 2020",
pages = "907--917",
editor = "Hal Daume and Aarti Singh",
booktitle = "37th International Conference on Machine Learning, ICML 2020",
}