Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246

Tomer Cooks, Ioannis S. Pateras, Lisa M. Jenkins, Keval M. Patel, Ana I. Robles, James Morris, Tim Forshew, Ettore Appella, Vassilis G. Gorgoulis, Curtis C. Harris

Research output: Contribution to journalArticlepeer-review

Abstract

TP53 mutants (mutp53) are involved in the pathogenesis of most human cancers. Specific mutp53 proteins gain oncogenic functions (GOFs) distinct from the tumor suppressor activity of the wild-type protein. Tumor-associated macrophages (TAMs), a hallmark of solid tumors, are typically correlated with poor prognosis. Here, we report a non-cell-autonomous mechanism, whereby human mutp53 cancer cells reprogram macrophages to a tumor supportive and anti-inflammatory state. The colon cancer cells harboring GOF mutp53 selectively shed miR-1246-enriched exosomes. Uptake of these exosomes by neighboring macrophages triggers their miR-1246-dependent reprogramming into a cancer-promoting state. Mutp53-reprogammed TAMs favor anti-inflammatory immunosuppression with increased activity of TGF-β. These findings, associated with poor survival in colon cancer patients, strongly support a microenvironmental GOF role for mutp53 in actively engaging the immune system to promote cancer progression and metastasis.

Original languageAmerican English
Article number771
JournalNature Communications
Volume9
Issue number1
DOIs
StatePublished - 1 Dec 2018
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246'. Together they form a unique fingerprint.

Cite this