TY - JOUR
T1 - Multiwavelength campaign on Mrk 509
T2 - I. Variability and spectral energy distribution
AU - Kaastra, J. S.
AU - Petrucci, P. O.
AU - Cappi, M.
AU - Arav, N.
AU - Behar, E.
AU - Bianchi, S.
AU - Bloom, J.
AU - Blustin, A. J.
AU - Branduardi-Raymont, G.
AU - Costantini, E.
AU - Dadina, M.
AU - Detmers, R. G.
AU - Ebrero, J.
AU - Jonker, P. G.
AU - Klein, C.
AU - Kriss, G. A.
AU - Lubiński, P.
AU - Malzac, J.
AU - Mehdipour, M.
AU - Paltani, S.
AU - Pinto, C.
AU - Ponti, G.
AU - Ratti, E. M.
AU - Smith, R. A.N.
AU - Steenbrugge, K. C.
AU - De Vries, C. P.
N1 - Funding Information: This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). It is also based on observations with INTEGRAL, an ESA project with instrument and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic, and Poland and with the participation of Russia and the USA. This work made use of data supplied by the UK Swift Science Data Centre at the University if Leicester. SRON is supported financially by NWO, the Netherlands Organization for Scientific Research. J.S. Kaastra thanks the PI of Swift, Neil Gehrels, for approving the TOO observations, and the duty scientists at the William Herschel Telescope for performing the service observations. P.-O. Petrucci acknowledges financial support from CNES and the French GDR PCHE. M. Cappi, M. Dadina, S. Bianchi, and G. Ponti acknowledge financial support from contract ASI-INAF n. I/088/06/0. N. Arav and G. Kriss gratefully acknowledge support from NASA/XMM-Newton Guest Investigator grant NNX09AR01G. Support for HST Program number 12022 was provided by NASA through grants from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. E. Behar was supported by a grant from the ISF. A. Blustin acknowledges the support of a STFC Postdoctoral Fellowship. P. Lubiński has been supported by the Polish MNiSW grants NN203065933 and 362/1/N-INTEGRAL/2008/09/0. M. Mehdipour acknowledges the support of a PhD studentship awarded by the UK Science & Technology Facilities Council (STFC). G. Ponti acknowledges support via an EU Marie Curie Intra-European Fellowship under contract No. FP7-PEOPLE-2009-IEF-254279. K. Steenbrugge acknowledges the support of Comité Mixto ESO – Gobierno de Chile.
PY - 2011
Y1 - 2011
N2 - Context. Active galactic nuclei (AGN) show a wealth of interesting physical processes, some of which are poorly understood. In a broader context, they play an important role in processes that are far beyond their immediate surroundings, owing to the high emitted power. Aims. We want to address a number of open questions, including the location and physics of the outflow from AGN, the nature of the continuum emission, the geometry and physical state of the X-ray broad emission line region, the Fe-K line complex, the metal abundances of the nucleus, and finally the interstellar medium of our own Galaxy as seen through the signatures it imprints on the X-ray and UV spectra of AGN. Methods. We study one of the best targets for these aims, the Seyfert 1 galaxy Mrk 509 with a multiwavelength campaign using five satellites (XMM-Newton, INTEGRAL, Chandra, HST, and Swift) and two ground-based facilities (WHT and PAIRITEL). Our observations cover more than five decades in frequency, from 2 μm to 200 keV. The combination of high-resolution spectroscopy and time variability allows us to disentangle and study the different components. Our campaign covers 100 days from September to December 2009, and is centred on a simultaneous set of deep XMM-Newton and INTEGRAL observations with regular time intervals, spanning seven weeks. Results. We obtain a continuous light curve in the X-ray and UV band, showing a strong, up to 60% flux increase in the soft X-ray band during the three weeks in the middle of our deepest monitoring campaign, and which is correlated with an enhancement of the UV flux. This allows us to study the time evolution of the continuum and the outflow. By stacking the observations, we have also obtained one of the best X-ray and UV spectra of a Seyfert galaxy ever obtained. In this paper we also study the effects of the spectral energy distribution (SED) that we obtained on the photo-ionisation equilibrium. Thanks to our broad-band coverage, uncertainties on the SED do not strongly affect the determination of this equilibrium. Conclusions. Here we present our very successful campaign and in a series of subsequent papers we will elaborate on different aspects of our study.
AB - Context. Active galactic nuclei (AGN) show a wealth of interesting physical processes, some of which are poorly understood. In a broader context, they play an important role in processes that are far beyond their immediate surroundings, owing to the high emitted power. Aims. We want to address a number of open questions, including the location and physics of the outflow from AGN, the nature of the continuum emission, the geometry and physical state of the X-ray broad emission line region, the Fe-K line complex, the metal abundances of the nucleus, and finally the interstellar medium of our own Galaxy as seen through the signatures it imprints on the X-ray and UV spectra of AGN. Methods. We study one of the best targets for these aims, the Seyfert 1 galaxy Mrk 509 with a multiwavelength campaign using five satellites (XMM-Newton, INTEGRAL, Chandra, HST, and Swift) and two ground-based facilities (WHT and PAIRITEL). Our observations cover more than five decades in frequency, from 2 μm to 200 keV. The combination of high-resolution spectroscopy and time variability allows us to disentangle and study the different components. Our campaign covers 100 days from September to December 2009, and is centred on a simultaneous set of deep XMM-Newton and INTEGRAL observations with regular time intervals, spanning seven weeks. Results. We obtain a continuous light curve in the X-ray and UV band, showing a strong, up to 60% flux increase in the soft X-ray band during the three weeks in the middle of our deepest monitoring campaign, and which is correlated with an enhancement of the UV flux. This allows us to study the time evolution of the continuum and the outflow. By stacking the observations, we have also obtained one of the best X-ray and UV spectra of a Seyfert galaxy ever obtained. In this paper we also study the effects of the spectral energy distribution (SED) that we obtained on the photo-ionisation equilibrium. Thanks to our broad-band coverage, uncertainties on the SED do not strongly affect the determination of this equilibrium. Conclusions. Here we present our very successful campaign and in a series of subsequent papers we will elaborate on different aspects of our study.
KW - X-rays: general
KW - galaxies: active
KW - quasars: absorption lines
UR - http://www.scopus.com/inward/record.url?scp=80053548936&partnerID=8YFLogxK
U2 - https://doi.org/10.1051/0004-6361/201116869
DO - https://doi.org/10.1051/0004-6361/201116869
M3 - مقالة
SN - 0004-6361
VL - 534
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A36
ER -