@inproceedings{494ffd9456144ee5845b43b53a7e814b,
title = "Multiclass Boosting: Simple and Intuitive Weak Learning Criteria",
abstract = "We study a generalization of boosting to the multiclass setting. We introduce a weak learning condition for multiclass classification that captures the original notion of weak learnability as being “slightly better than random guessing”. We give a simple and efficient boosting algorithm, that does not require realizability assumptions and its sample and oracle complexity bounds are independent of the number of classes. In addition, we utilize our new boosting technique in several theoretical applications within the context of List PAC Learning. First, we establish an equivalence to weak PAC learning. Furthermore, we present a new result on boosting for list learners, as well as provide a novel proof for the characterization of multiclass PAC learning and List PAC learning. Notably, our technique gives rise to a simplified analysis, and also implies an improved error bound for large list sizes, compared to previous results.",
author = "Nataly Brukhim and Amit Daniely and Yishay Mansour and Shay Moran",
note = "Publisher Copyright: {\textcopyright} 2023 Neural information processing systems foundation. All rights reserved.; 37th Conference on Neural Information Processing Systems, NeurIPS 2023 ; Conference date: 10-12-2023 Through 16-12-2023",
year = "2023",
language = "الإنجليزيّة",
isbn = "9781713899921",
series = "Advances in Neural Information Processing Systems",
editor = "A. Oh and T. Neumann and A. Globerson and K. Saenko and M. Hardt and S. Levine",
booktitle = "Advances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023",
}