@inproceedings{2b44ce73f62b4df39d01fb8b30ff03ed,
title = "Multi-Microphone Speech Emotion Recognition Using the Hierarchical Token-Semantic Audio Transformer Architecture",
abstract = "The performance of most emotion recognition systems degrades in real-life situations (“in the wild” scenarios) where the audio is contaminated by reverberation. Our study explores new methods to alleviate the performance degradation of Speech Emotion Recognition (SER) algorithms and develop a more robust system for adverse conditions. We propose processing multi-microphone signals to address these challenges and improve emotion classification accuracy. We adopt a state-of-the-art transformer model, the Hierarchical Token-semantic Audio Transformer (HTS-AT), to handle multi-channel audio inputs. We evaluate two strategies: averaging mel-spectrograms across channels and summing patch-embedded representations. Our multi-microphone model achieves superior performance compared to single-channel baselines when tested on real-world reverberant environments.",
keywords = "human-robot interaction, speech emotion recognition",
author = "Ohad Cohen and Gershon Hazan and Sharon Gannot",
note = "Publisher Copyright: {\textcopyright} 2025 IEEE.; 2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025 ; Conference date: 06-04-2025 Through 11-04-2025",
year = "2025",
doi = "10.1109/icassp49660.2025.10887873",
language = "الإنجليزيّة",
series = "ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
editor = "Rao, \{Bhaskar D\} and Isabel Trancoso and Gaurav Sharma and Mehta, \{Neelesh B.\}",
booktitle = "2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025 - Proceedings",
address = "الولايات المتّحدة",
}