Abstract
We have investigated the title question for the W4-08 thermochemical benchmark using l-saturated truncations of a large reference (REF) basis set, as well as for standard F12-optimized basis sets. With the REF basis set, the root-mean-square (RMS) contribution of i functions to the MP2-F12 total atomization energies (TAEs) is about 0.01 kcal/mol, the largest individual contributions being 0.04 kcal/mol for P2and P4. However, even for these cases, basis set extrapolation from {g,h} basis sets adequately addresses the problem. Using basis sets insufficiently saturated in the spdfgh angular momenta may lead to exaggerated i function contributions. For extrapolation from spdfg and spdfgh basis sets, basis set convergence appears to be quite close to the theoretical asymptotic ∝ L-7behavior. We hence conclude that h functions are sufficient even for highly demanding F12 applications. With one-parameter extrapolation, spdf and spdfg basis sets are adequate, aug-cc-pV{T,Q}Z-F12 yielding a RMSD = 0.03 kcal/mol. A limited exploration of CCSD(F12*) and CCSD-F12b suggests our conclusions are applicable to higher-level F12 methods as well.
Original language | English |
---|---|
Pages (from-to) | 3964-3971 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry A |
Volume | 126 |
Issue number | 24 |
Early online date | 10 Jun 2022 |
DOIs | |
State | Published - 23 Jun 2022 |
All Science Journal Classification (ASJC) codes
- Physical and Theoretical Chemistry