Abstract
Carbon monoxide dehydrogenase (CODH) enzymes are active for the reversible CO oxidation–CO2 reduction reaction and are of interest in the context of CO2 abatement and carbon-neutral solar fuels. Bioinspired by the active-site composition of the CODHs, polyoxometalates triply substituted with first-row transition metals were modularly synthesized. The polyanions, in short, {SiM3W9} and {SiM′2M′′W9}, M, M′, M′′=CuII, NiII, FeIII are shown to be electrocatalysts for reversible CO oxidation–CO2 reduction. A catalytic Tafel plot showed that {SiCu3W9} was the most reactive for CO2 reduction, and electrolysis reactions yielded significant amounts of CO with 98 % faradaic efficiency. In contrast, Fe–Ni compounds such as {SiFeNi2W9} preferably catalyzed the oxidation of CO to CO2 similar to what is observed for the [NiFe]-CODH enzyme. Compositional control of the heterometal complexes, now and in the future, leads to control of reactivity and selectivity for CO2 electrocatalytic reduction.
Original language | English |
---|---|
Article number | e202112915 |
Number of pages | 8 |
Journal | Angewandte Chemie |
Volume | 134 |
Issue number | 5 |
DOIs | |
State | Published Online - 18 Jan 2022 |