@inproceedings{9f6fb8196e09494c9e68c6940bd03d53,
title = "Modeling of phase transition of partially miscible solvent systems: Hydrodynamics and heat transfer phenomena",
abstract = "A numerical model for critical quench of binary mixtures in a 2D geometry is developed, whereby two opposite walls are cooled below the critical temperature. The model equations for the conservation of mass, momentum and energy are derived according to the diffuse interface approach. The energy equation has been re-formulated to identify the heat source term which is associated with liquid-liquid phase separation. The numerical tool is used for simulating the separation process and to obtain the velocity, concentration and temperature fields. The 2D simulation enables the analysis of the evolving velocity field induced by the non-equilibrium Korteweg force. The numerical model developed can be further used for the analysis of the convective heat transfer phenomena. This convective motion is believed to be responsible for the heat transfer rate enhancement observed in the experiments during non-isothermal phase separation.",
author = "Vered Segal and Amos Ullmann and Neima Brauner",
note = "Publisher Copyright: {\textcopyright} 2012, Begell House Inc. All rights reserved.; International Symposium on Advances in Computational Heat Transfer, CHT 2012 ; Conference date: 01-07-2012 Through 06-07-2012",
year = "2012",
doi = "https://doi.org/10.1615/ICHMT.2012.CHT-12.680",
language = "الإنجليزيّة",
isbn = "9781567003031",
series = "International Symposium on Advances in Computational Heat Transfer",
publisher = "Begell House Inc.",
pages = "1109--1122",
booktitle = "Proceedings of CHT-12. ICHMT International Symposium on Advances in Computational Heat Transfer, 2012",
address = "الولايات المتّحدة",
}