TY - JOUR
T1 - Modeling macroalgal forest distribution at mediterranean scale
T2 - Present status, drivers of changes and insights for conservation and management
AU - Fabbrizzi, Erika
AU - Scardi, Michele
AU - Ballesteros, Enric
AU - Benedetti-Cecchi, Lisandro
AU - Cebrian, Emma
AU - Ceccherelli, Giulia
AU - De Leo, Francesco
AU - Deidun, Alan
AU - Guarnieri, Giuseppe
AU - Falace, Annalisa
AU - Fraissinet, Silvia
AU - Giommi, Chiara
AU - Mačić, Vesna
AU - Mangialajo, Luisa
AU - Mannino, Anna Maria
AU - Piazzi, Luigi
AU - Ramdani, Mohamed
AU - Rilov, Gil
AU - Rindi, Luca
AU - Rizzo, Lucia
AU - Sarà, Gianluca
AU - Souissi, Jamila Ben
AU - Taskin, Ergun
AU - Fraschetti, Simonetta
N1 - Funding Information: This research was funded by the EU Interreg MED AMAre Project (http://msp-platform.eu/projects/amare-actions-marine-protected-areas) and the project MERCES of the European Union’s Horizon 2020 Research (Grant Agreement No. 689518, http://www.merces-project.eu). EF was supported by Regione Lazio within the project Torno Subito, 2017 (http: //www.tornosubito.laziodisu.it). We thank the collaborators on the AMAre, MERCES, and CoCoNet projects who provided the background information supporting this study. We also acknowledge the role of the project AFRIMED (EASME/EMFF/2017/1.2.1.12 – Sustainable Blue Economy). Funding Information: This research was funded by the EU Interreg MED AMAre Project (http://msp-platform.eu/projects/amare-actions-marine-protected-areas) and the project MERCES of the European Union’s Horizon 2020 Research (Grant Agreement No. 689518, http://www.merces-project.eu). EF was supported by Regione Lazio within the project Torno Subito, 2017 (http: //www.tornosubito.laziodisu.it). Publisher Copyright: © 2020 Fabbrizzi, Scardi, Ballesteros, Benedetti-Cecchi, Cebrian, Ceccherelli, De Leo, Deidun, Guarnieri, Falace, Fraissinet, Giommi, Mačić, Mangialajo, Mannino, Piazzi, Ramdani, Rilov, Rindi, Rizzo, Sarà, Souissi, Taskin and Fraschetti.
PY - 2020/2
Y1 - 2020/2
N2 - Macroalgal forests are one of the most productive and valuable marine ecosystems, but yet strongly exposed to fragmentation and loss. Detailed large-scale information on their distribution is largely lacking, hindering conservation initiatives. In this study, a systematic effort to combine spatial data on Cystoseira C. Agardh canopies (Fucales, Phaeophyta) was carried out to develop a Habitat Suitability Model (HSM) at Mediterranean scale, providing critical tools to improve site prioritization for their management, restoration and protection. A georeferenced database on the occurrence of 20 Cystoseira species was produced collecting all the available information from published and grey literature, web data portals and co-authors personal data. Data were associated to 55 predictor variable layers in the (ASCII) raster format and were used in order to develop the HSM by means of a Random Forest, a very effective Machine Learning technique. Knowledge about the distribution of Cystoseira canopies was available for about the 14% of the Mediterranean coastline. Absence data were available only for the 2% of the basin. Despite these gaps, our HSM showed high accuracy levels in reproducing Cystoseira distribution so that the first continuous maps of the habitat across the entire basin was produced. Misclassification errors mainly occurred in the eastern and southern part of the basin, where large gaps of knowledge emerged. The most relevant drivers were the geomorphological ones, followed by anthropogenic variables proxies of pollution and urbanization. Our model shows the importance of data sharing to combine a large number of spatial and environmental data, allowing to individuate areas with high probability of Cystoseira occurrence as suitable for its presence. This approach encourages the use of this modeling tool for the prediction of Cystoseira distribution and for supporting and planning conservation and management initiatives. The step forward is to refine the spatial information of presence-absence data about Cystoseira canopies and of environmental predictors in order to address species-specific assessments.
AB - Macroalgal forests are one of the most productive and valuable marine ecosystems, but yet strongly exposed to fragmentation and loss. Detailed large-scale information on their distribution is largely lacking, hindering conservation initiatives. In this study, a systematic effort to combine spatial data on Cystoseira C. Agardh canopies (Fucales, Phaeophyta) was carried out to develop a Habitat Suitability Model (HSM) at Mediterranean scale, providing critical tools to improve site prioritization for their management, restoration and protection. A georeferenced database on the occurrence of 20 Cystoseira species was produced collecting all the available information from published and grey literature, web data portals and co-authors personal data. Data were associated to 55 predictor variable layers in the (ASCII) raster format and were used in order to develop the HSM by means of a Random Forest, a very effective Machine Learning technique. Knowledge about the distribution of Cystoseira canopies was available for about the 14% of the Mediterranean coastline. Absence data were available only for the 2% of the basin. Despite these gaps, our HSM showed high accuracy levels in reproducing Cystoseira distribution so that the first continuous maps of the habitat across the entire basin was produced. Misclassification errors mainly occurred in the eastern and southern part of the basin, where large gaps of knowledge emerged. The most relevant drivers were the geomorphological ones, followed by anthropogenic variables proxies of pollution and urbanization. Our model shows the importance of data sharing to combine a large number of spatial and environmental data, allowing to individuate areas with high probability of Cystoseira occurrence as suitable for its presence. This approach encourages the use of this modeling tool for the prediction of Cystoseira distribution and for supporting and planning conservation and management initiatives. The step forward is to refine the spatial information of presence-absence data about Cystoseira canopies and of environmental predictors in order to address species-specific assessments.
KW - Cystoseira canopies
KW - Habitat suitability model
KW - Mediterranean Sea
KW - Random Forest
KW - Species distribution
UR - http://www.scopus.com/inward/record.url?scp=85079493595&partnerID=8YFLogxK
U2 - https://doi.org/10.3389/fmars.2020.00020
DO - https://doi.org/10.3389/fmars.2020.00020
M3 - Article
SN - 2296-7745
VL - 7
JO - Frontiers in Marine Science
JF - Frontiers in Marine Science
M1 - 20
ER -