Mirror symmetry for open r-spin invariants

Mark Gross, Tyler L. Kelly, Ran J. Tessler

Research output: Contribution to journalArticlepeer-review

Abstract

We show that a generating function for open r-spin enumerative invariants produces a universal unfolding of the poly-nomial xr. Further, the coordinates parametrizing this universal unfolding are flat coordinates on the Frobenius manifold associated to the Landau-Ginzburg model (C, xr) via Saito-Givental theory. This result provides evidence for the same phenomenon to occur in higher dimension, proven in the sequel [GKT22].

Original languageEnglish
Pages (from-to)1005-1024
Number of pages20
JournalPure and Applied Mathematics Quarterly
Volume20
Issue number2
DOIs
StatePublished - 3 Apr 2024

All Science Journal Classification (ASJC) codes

  • General Mathematics

Fingerprint

Dive into the research topics of 'Mirror symmetry for open r-spin invariants'. Together they form a unique fingerprint.

Cite this