Miniaturized ultrasound detector arrays in silicon photonics using pulse transmission amplitude monitoring

Yoav Hazan, Michael Nagli, Ahiad Levi, Amir Rosenthal

Research output: Contribution to journalArticlepeer-review

Abstract

Silicon photonics holds promise for a new generation of ultrasound-detection technology, based on optical resonators, with unparalleled miniaturization levels, sensitivities, and bandwidths, creating new possibilities for minimally invasive medical devices. While existing fabrication technologies are capable of producing dense resonator arrays whose resonance frequency is pressure sensitive, simultaneously monitoring the ultrasound-induced frequency modulation of numerous resonators has remained a challenge. Conventional techniques, which are based on tuning a continuous wave laser to the resonator wavelength, are not scalable due to the wavelength disparity between the resonators, requiring a separate laser for each resonator. In this work, we show that the Q-factor and transmission peak of silicon-based resonators can also be pressure sensitive, exploit this phenomenon to develop a readout scheme based on monitoring the amplitude, rather than frequency, at the output of the resonators using a single-pulse source, and demonstrate its compatibility with optoacoustic tomography.

Original languageEnglish
Pages (from-to)5660-5663
Number of pages4
JournalOptics Letters
Volume47
Issue number21
DOIs
StatePublished - 1 Nov 2022

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Miniaturized ultrasound detector arrays in silicon photonics using pulse transmission amplitude monitoring'. Together they form a unique fingerprint.

Cite this