MIMOSA2: A metabolic network-based tool for inferring mechanism-supported relationships in microbiome-metabolome data

Cecilia Noecker, Alexander Eng, Efrat Muller, Elhanan Borenstein

Research output: Contribution to journalArticlepeer-review

Abstract

Motivation: Recent technological developments have facilitated an expansion of microbiome-metabolome studies, in which samples are assayed using both genomic and metabolomic technologies to characterize the abundances of microbial taxa and metabolites. A common goal of these studies is to identify microbial species or genes that contribute to differences in metabolite levels across samples. Previous work indicated that integrating these datasets with reference knowledge on microbial metabolic capacities may enable more precise and confident inference of microbe-metabolite links. Results: We present MIMOSA2, an R package and web application for model-based integrative analysis of microbiome-metabolome datasets. MIMOSA2 uses genomic and metabolic reference databases to construct a community metabolic model based on microbiome data and uses this model to predict differences in metabolite levels across samples. These predictions are compared with metabolomics data to identify putative microbiome-governed metabolites and taxonomic contributors to metabolite variation. MIMOSA2 supports various input data types and customization with user-defined metabolic pathways. We establish MIMOSA2's ability to identify ground truth microbial mechanisms in simulation datasets, compare its results with experimentally inferred mechanisms in honeybee microbiota, and demonstrate its application in two human studies of inflammatory bowel disease. Overall, MIMOSA2 combines reference databases, a validated statistical framework, and a user-friendly interface to facilitate modeling and evaluating relationships between members of the microbiota and their metabolic products.

Original languageEnglish
Pages (from-to)1615-1623
Number of pages9
JournalBioinformatics
Volume38
Issue number6
DOIs
StatePublished - 15 Mar 2022

All Science Journal Classification (ASJC) codes

  • Computational Mathematics
  • Molecular Biology
  • Biochemistry
  • Statistics and Probability
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'MIMOSA2: A metabolic network-based tool for inferring mechanism-supported relationships in microbiome-metabolome data'. Together they form a unique fingerprint.

Cite this