TY - CHAP
T1 - Microvillar Cartography
T2 - A Super-Resolution Single-Molecule Imaging Method to Map the Positions of Membrane Proteins with Respect to Cellular Surface Topography
AU - Ghosh, Shirsendu
AU - Alcover, Andres
AU - Haran, Gilad
N1 - Publisher Copyright: © 2023, The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2023
Y1 - 2023
N2 - We describe microvillar cartography (MC), a method to map proteins on cellular surfaces with respect to the membrane topography. The surfaces of many cells are not smooth, but are rather covered with various protrusions such as microvilli. These protrusions may play key roles in multiple cellular functions, due to their ability to control the distribution of specific protein assemblies on the cell surface. Thus, for example, we have shown that the T-cell receptor and several of its proximal signaling proteins reside on microvilli, while others are excluded from these projections. These results have indicated that microvilli can function as key signaling hubs for the initiation of the immune response. MC has facilitated our observations of particular surface proteins and their specialized distribution on microvillar and non-microvillar compartments. MC combines membrane topography imaging, using variable-angle total internal microscopy, with stochastic localization nanoscopy, which generates deep sub-diffraction maps of protein distribution. Since the method is based on light microscopy, it avoids some of the pitfalls inherent to electron-microscopy-based techniques, such as dehydration, the need for carbon coating, and immunogold clustering, and is amenable to future developments involving, for example, live-cell imaging. This protocol details the procedures we developed for MC, which can be readily adopted to study a broad range of cell-surface molecules and dissect their distribution within distinct surface assemblies under multiple cell activation states.
AB - We describe microvillar cartography (MC), a method to map proteins on cellular surfaces with respect to the membrane topography. The surfaces of many cells are not smooth, but are rather covered with various protrusions such as microvilli. These protrusions may play key roles in multiple cellular functions, due to their ability to control the distribution of specific protein assemblies on the cell surface. Thus, for example, we have shown that the T-cell receptor and several of its proximal signaling proteins reside on microvilli, while others are excluded from these projections. These results have indicated that microvilli can function as key signaling hubs for the initiation of the immune response. MC has facilitated our observations of particular surface proteins and their specialized distribution on microvillar and non-microvillar compartments. MC combines membrane topography imaging, using variable-angle total internal microscopy, with stochastic localization nanoscopy, which generates deep sub-diffraction maps of protein distribution. Since the method is based on light microscopy, it avoids some of the pitfalls inherent to electron-microscopy-based techniques, such as dehydration, the need for carbon coating, and immunogold clustering, and is amenable to future developments involving, for example, live-cell imaging. This protocol details the procedures we developed for MC, which can be readily adopted to study a broad range of cell-surface molecules and dissect their distribution within distinct surface assemblies under multiple cell activation states.
U2 - 10.1007/978-1-0716-3135-5_12
DO - 10.1007/978-1-0716-3135-5_12
M3 - فصل
C2 - 37106183
T3 - Methods in Molecular Biology
SP - 169
EP - 199
BT - Methods in Molecular Biology
PB - Humana Press
ER -