MeshWalker: Deep mesh understanding by random walks

Alon Lahav, Ayellet Tal

Research output: Contribution to journalArticlepeer-review

Abstract

Most attempts to represent 3D shapes for deep learning have focused on volumetric grids, multi-view images and point clouds. In this paper we look at the most popular representation of 3D shapes in computer graphics - -a triangular mesh - -and ask how it can be utilized within deep learning. The few attempts to answer this question propose to adapt convolutions & pooling to suit Convolutional Neural Networks (CNNs). This paper proposes a very different approach, termed MeshWalker to learn the shape directly from a given mesh. The key idea is to represent the mesh by random walks along the surface, which "explore"the mesh's geometry and topology. Each walk is organized as a list of vertices, which in some manner imposes regularity on the mesh. The walk is fed into a Recurrent Neural Network (RNN) that "remembers"the history of the walk. We show that our approach achieves state-of-the-art results for two fundamental shape analysis tasks: shape classification and semantic segmentation. Furthermore, even a very small number of examples suffices for learning. This is highly important, since large datasets of meshes are difficult to acquire.

Original languageEnglish
Article number263
JournalACM Transactions on Graphics
Volume39
Issue number6
DOIs
StatePublished - 26 Nov 2020

Keywords

  • deep learning
  • random walks

All Science Journal Classification (ASJC) codes

  • Computer Graphics and Computer-Aided Design

Fingerprint

Dive into the research topics of 'MeshWalker: Deep mesh understanding by random walks'. Together they form a unique fingerprint.

Cite this