Abstract
Original language | English |
---|---|
Article number | 054910 |
Number of pages | 25 |
Journal | Physical Review C |
Volume | 94 |
Issue number | 5 |
DOIs | |
State | Published - Nov 2016 |
Fingerprint
Dive into the research topics of 'Measurements of directed, elliptic, and triangular flow in Cu plus Au collisions at root sNN=200 GeV'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical Review C, Vol. 94, No. 5, 054910, 11.2016.
Research output: Contribution to journal › Article › peer-review
TY - JOUR
T1 - Measurements of directed, elliptic, and triangular flow in Cu plus Au collisions at root sNN=200 GeV
AU - Adare, A
AU - Aidala, C
AU - Ajitanand, NN
AU - Akiba, Y
AU - Akimoto, R
AU - Alexander, J
AU - Alfred, M
AU - Aoki, K
AU - Apadula, N
AU - Asano, H
AU - Atomssa, ET
AU - Awes, TC
AU - Azmoun, B
AU - Babintsev, V
AU - Bai, M
AU - Bai, X
AU - Bandara, NS
AU - Bannier, B
AU - Barish, KN
AU - Bathe, S
AU - Baublis, V
AU - Baumann, C
AU - Baumgart, S
AU - Bazilevsky, A
AU - Beaumier, M
AU - Beckman, S
AU - Belmont, R
AU - Berdnikov, A
AU - Berdnikov, Y
AU - Black, D
AU - Blau, DS
AU - Bok, JS
AU - Boyle, K
AU - Brooks, ML
AU - Bryslawskyj, J
AU - Buesching, H
AU - Bumazhnov, V
AU - Butsyk, S
AU - Campbell, S
AU - Chen, CH
AU - Chi, CY
AU - Chiu, M
AU - Choi, IJ
AU - Choi, JB
AU - Choi, S
AU - Christiansen, P
AU - Chujo, T
AU - Cianciolo, V
AU - Citron, Zvi Hirsh
AU - Cole, BA
AU - Cronin, N
AU - Crossette, N
AU - Csanad, M
AU - Csorgo, T
AU - Danley, TW
AU - Datta, A
AU - Daugherity, MS
AU - David, G
AU - DeBlasio, K
AU - Dehmelt, K
AU - Denisov, A
AU - Deshpande, A
AU - Desmond, EJ
AU - Ding, L
AU - Dion, A
AU - Diss, PB
AU - Do, JH
AU - D'Orazio, L
AU - Drapier, O
AU - Drees, A
AU - Drees, KA
AU - Durham, JM
AU - Durum, A
AU - Engelmore, T
AU - Enokizono, A
AU - Esumi, S
AU - Eyser, KO
AU - Fadem, B
AU - Feege, N
AU - Fields, DE
AU - Finger, M
AU - Fleuret, F
AU - Fokin, SL
AU - Frantz, JE
AU - Franz, A
AU - Frawley, AD
AU - Fukao, Y
AU - Fusayasu, T
AU - Gainey, K
AU - Gal, C
AU - Gallus, P
AU - Garg, P
AU - Garishvili, A
AU - Garishvili, I
AU - Ge, H
AU - Giordano, F
AU - Glenn, A
AU - Gong, X
AU - Gonin, M
AU - Goto, Y
AU - de Cassagnac, Cassagnac, RG
AU - Grau, N
AU - Greene, SV
AU - Perdekamp, MG
AU - Gu, Y
AU - Gunji, T
AU - Guragain, H
AU - Hachiya, T
AU - Haggerty, JS
AU - Hahn, KI
AU - Hamagaki, H
AU - Hamilton, HF
AU - Han, SY
AU - Hanks, J
AU - Hasegawa, S
AU - Haseler, TOS
AU - Hashimoto, K
AU - Hayano, R
AU - He, X
AU - Hemmick, TK
AU - Hester, T
AU - Hill, JC
AU - Hollis, RS
AU - Homma, K
AU - Hong, B
AU - Hoshino, T
AU - Hotvedt, N
AU - Huang, J
AU - Huang, Song - Jeng
AU - Ichihara, T
AU - Ikeda, Y
AU - Imai, K
AU - Imazu, Y
AU - Inaba, M
AU - Iordanova, A
AU - Isenhower, D
AU - Isinhue, A
AU - Ivanishchev, D
AU - Jacak, BV
AU - Jeon, SJ
AU - Jezghani, M
AU - Jia, J
AU - Jiang, X
AU - Johnson, BM
AU - Joo, KS
AU - Jouan, D
AU - Jumper, DS
AU - Kamin, J
AU - Kanda, S
AU - Kang, BH
AU - Kang, JH
AU - Kang, JS
AU - Kapustinsky, J
AU - Kawall, D
AU - Kazantsev, AV
AU - Key, JA
AU - Khachatryan, V
AU - Khandai, PK
AU - Khanzadeev, A
AU - Kijima, KM
AU - Kim, C
AU - Kim, DJ
AU - Kim, EJ
AU - Kim, GW
AU - Kim, M
AU - Kim, YJ
AU - Kim, YK
AU - Kimelman, B
AU - Kistenev, E
AU - Kitamura, R
AU - Klatsky, J
AU - Kleinjan, D
AU - Kline, P
AU - Koblesky, T
AU - Kofarago, M
AU - Komkov, B
AU - Koster, J
AU - Kotchetkov, D
AU - Kotov, D
AU - Krizek, F
AU - Kurita, K
AU - Kurosawa, M
AU - Kwon, Y
AU - Lacey, R
AU - Lai, YS
AU - Lajoie, JG
AU - Lebedev, A
AU - Lee, DM
AU - Lee, GH
AU - Lee, Jiwoong
AU - Lee, KB
AU - Lee, KS
AU - Lee, Seung Joon
AU - Lee, SH
AU - Leitch, MJ
AU - Leitgab, M
AU - Lewis, B
AU - Li, X
AU - Lim, SH
AU - Liu, MX
AU - Lynch, D
AU - Maguire, CF
AU - Makdisi, YI
AU - Makek, Mihael
AU - Manion, A
AU - Manko, VI
AU - Mannel, E
AU - Maruyama, T
AU - McCumber, M
AU - McGaughey, PL
AU - McGlinchey, D
AU - McKinney, C
AU - Meles, A
AU - Mendoza, M
AU - Meredith, B
AU - Miake, Y
AU - Mibe, T
AU - Mignerey, AC
AU - Milov, Alexander
AU - Mishra, DK
AU - Mitchell, JT
AU - Miyasaka, S
AU - Mizuno, S
AU - Mohanty, AK
AU - Mohapatra, S
AU - Montuenga, P
AU - Moon, T
AU - Morrison, DP
AU - Moskowitz, M
AU - Moukhanova, TV
AU - Murakami, T
AU - Murata, J
AU - Mwai, A
AU - Nagae, T
AU - Nagamiya, S
AU - Nagashima, K
AU - Nagle, JL
AU - Nagy, MI
AU - Nakagawa, I
AU - Nakagomi, H
AU - Nakamiya, Y
AU - Nakamura, KR
AU - Nakamura, T
AU - Nakano, K
AU - Nattrass, C
AU - Netrakanti, PK
AU - Nihashi, M
AU - Tserruya, Itzhak
N1 - Office of Nuclear Physics in the Office of Science of the Department of Energy (USA); National Science Foundation (USA); Abilene Christian University Research Council (USA); Research Foundation of SUNY (USA); College of Arts and Sciences, Vanderbilt University (USA); Ministry of Education, Culture, Sports, Science, and Technology (Japan); Japan Society for the Promotion of Science (Japan); Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (Brazil); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil); Natural Science Foundation of China (People's Republic of China); Croatian Science Foundation (Croatia); Ministry of Science, Education, and Sports (Croatia); Ministry of Education, Youth and Sports (Czech Republic); Centre National de la Recherche Scientifique (France); Commissariat a l' Energie Atomique (France); Institut National de Physique Nucleaire et de Physique des Particules (France); Bundesministerium fur Bildung und Forschung (Germany); National Science Fund (Hungary); OTKA (Hungary); Karoly Robert University College (Hungary); Ch. Simonyi Fund (Hungary); Department of Atomic Energy (India); Israel Science Foundation (Israel); Basic Science Research Program through NRF of the Ministry of Education (Korea); Physics Department, Lahore University of Management Sciences (Pakistan); Ministry of Education and Science (Russia); Russian Academy of Sciences (Russia); Federal Agency of Atomic Energy (Russia); Wallenberg Foundation (Sweden); US Civilian Research and Development Foundation; Hungarian American Enterprise Scholarship Fund; US-Israel Binational Science Foundation; Deutscher Akademischer Austausch Dienst (Germany); Alexander von Humboldt Stiftung (Germany); Department of Science and Technology (India); VR (Sweden) We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Croatian Science Foundation and Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat a l' Energie Atomique, and Institut National de Physique Nucleaire et de Physique des Particules (France), Bundesministerium fur Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), National Science Fund, OTKA, Karoly Robert University College, and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research Program through NRF of the Ministry of Education (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, and the US-Israel Binational Science Foundation.
PY - 2016/11
Y1 - 2016/11
N2 - Measurements of anisotropic flow Fourier coefficients (upsilon(n)) for inclusive charged particles and identified hadrons pi(+/-), K-+/-, p, and (p) over bar produced at midrapidity in Cu + Au collisions at root s(NN) = 200 GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy-Ion Collider (RHIC). The particle azimuthal distributions with respect to different-order symmetry planes psi(n), for n = 1, 2, and 3 are studied as a function of transverse momentum p(T) over a broad range of collision centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared with hydrodynamical and transport model calculations. We also compare these Cu + Au results with those in Cu + Cu and Au + Au collisions at the same root s(NN) and find that the upsilon(2) and upsilon(3), as a function of transverse momentum, follow a common scaling with 1/(epsilon N-n(part)1/3).
AB - Measurements of anisotropic flow Fourier coefficients (upsilon(n)) for inclusive charged particles and identified hadrons pi(+/-), K-+/-, p, and (p) over bar produced at midrapidity in Cu + Au collisions at root s(NN) = 200 GeV are presented. The data were collected in 2012 by the PHENIX experiment at the Relativistic Heavy-Ion Collider (RHIC). The particle azimuthal distributions with respect to different-order symmetry planes psi(n), for n = 1, 2, and 3 are studied as a function of transverse momentum p(T) over a broad range of collision centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared with hydrodynamical and transport model calculations. We also compare these Cu + Au results with those in Cu + Cu and Au + Au collisions at the same root s(NN) and find that the upsilon(2) and upsilon(3), as a function of transverse momentum, follow a common scaling with 1/(epsilon N-n(part)1/3).
U2 - https://doi.org/10.1103/PhysRevC.94.054910
DO - https://doi.org/10.1103/PhysRevC.94.054910
M3 - مقالة
SN - 2469-9985
VL - 94
JO - Physical Review C
JF - Physical Review C
IS - 5
M1 - 054910
ER -