Abstract
The quadrupolar interaction experienced by the spin-1 14N nucleus is known to be extremely sensitive to local structure and dynamics. Furthermore, the 14N isotope is 99.6% naturally abundant, making it an attractive target for characterisation of nitrogen-rich biological molecules by solid-state NMR. In this study, dynamic nuclear polarization (DNP) is used in conjunction with indirect 14N detected solid-state NMR experiments to simultaneously characterise the quadrupolar interaction at multiple 14N sites in the backbone of the microcrystalline protein, GB3. Considerable variation in the quadrupolar interaction (>700 kHz) is observed throughout the protein backbone. The distribution in quadrupolar interactions observed reports on the variation in local backbone conformation and subtle differences in hydrogen-bonding; demonstrating a new route to the structural and dynamic analysis of biomolecules.
Original language | English |
---|---|
Pages (from-to) | 12116-12119 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 53 |
Issue number | 89 |
DOIs | |
State | Published - 2017 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Catalysis
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- General Chemistry
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry