Abstract
Mean dimension is a topological invariant for dynamical systems that is meaningful for systems with infinite dimension and infinite entropy. Given a Zk-action on a compact metric space X, we study the following three problems closely related to mean dimension.(1)When is X isomorphic to the inverse limit of finite entropy systems?(2)Suppose the topological entropy htop(X) is infinite. How much topological entropy can be detected if one considers X only up to a given level of accuracy? How fast does this amount of entropy grow as the level of resolution becomes finer and finer?(3)When can we embed X into the Zk-shift on the infinite dimensional cube ([0,1]D)Zk? These were investigated for Z-actions in Lindenstrauss (Inst Hautes Études Sci Publ Math 89:227–262, 1999), but the generalization to Zk remained an open problem. When X has the marker property, in particular when X has a completely aperiodic minimal factor, we completely solve (1) and a natural interpretation of (2), and give a reasonably satisfactory answer to (3). A key ingredient is a new method to continuously partition every orbit into good pieces.
Original language | English |
---|---|
Pages (from-to) | 778-817 |
Number of pages | 40 |
Journal | Geometric and Functional Analysis |
Volume | 26 |
Issue number | 3 |
DOIs | |
State | Published - 1 Jun 2016 |
Keywords
- 37B40
- 54F45
All Science Journal Classification (ASJC) codes
- Analysis
- Geometry and Topology