Material radiopurity control in the XENONnT experiment

E. Aprile, K. Abe, F. Agostini, S. Ahmed Maouloud, M. Alfonsi, L. Althueser, E. Angelino, J. R. Angevaare, V. C. Antochi, D. Antón Martin, F. Arneodo, L. Baudis, A. L. Baxter, L. Bellagamba, R. Biondi, A. Bismark, S. Bruenner, A. Brown, G. Bruno, C. CapelliR. Budnik, J. M. R. Cardoso, D. Cichon, B. Cimmino, M. Clark, A. P. Colijn, J. Conrad, J. J. Cuenca-García, J. P. Cussonneau, V. D’Andrea, M. P. Decowski, P. Di Gangi, S. Di Pede, A. Di Giovanni, R. Di Stefano, S. Diglio, A. Elykov, S. Farrell, A. D. Ferella, H. Fischer, W. Fulgione, P. Gaemers, R. Gaior, M. Galloway, F. Gao, R. Glade-Beucke, L. Grandi, J. Grigat, A. Higuera, C. Hils, K. Hiraide, L. Hoetzsch, J. Howlett, M. Iacovacci, Y. Itow, J. Jakob, F. Joerg, N. Kato, P. Kavrigin, S. Kazama, M. Kobayashi, G. Koltman, A. Kopec, H. Landsman, R. F. Lang, L. Levinson, I. Li, S. Liang, S. Lindemann, M. Lindner, K. Liu, F. Lombardi, J. Long, J. A. M. Lopes, Y. Ma, C. Macolino, J. Mahlstedt, A. Mancuso, L. Manenti, A. Manfredini, F. Marignetti, T. Marrodán Undagoitia, K. Martens, J. Masbou, D. Masson, E. Masson, S. Mastroianni, M. Messina, K. Miuchi, K. Mizukoshi, A. Molinario, S. Moriyama, K. Morå, Y. Mosbacher, M. Murra, K. Ni, U. Oberlack, J. Palacio, R. Peres, J. Pienaar, M. Pierre, V. Pizzella, G. Plante, J. Qi, J. Qin, D. Ramírez García, S. Reichard, A. Rocchetti, N. Rupp, L. Sanchez, J. M. F. dos Santos, G. Sartorelli, J. Schreiner, D. Schulte, H. Schulze Eißing, M. Schumann, L. Scotto Lavina, M. Selvi, F. Semeria, P. Shagin, E. Shockley, M. Silva, H. Simgen, A. Takeda, P. L. Tan, A. Terliuk, C. Therreau, D. Thers, F. Toschi, G. Trinchero, C. Tunnell, F. Tönnies, K. Valerius, G. Volta, Y. Wei, C. Weinheimer, M. Weiss, D. Wenz, J. Westermann, C. Wittweg, T. Wolf, Z. Xu, M. Yamashita, L. Yang, J. Ye, L. Yuan, G. Zavattini, Y. Zhang, M. Zhong, T. Zhu, J. P. Zopounidis, M. Laubenstein, S. Nisi

Research output: Contribution to journalArticlepeer-review

Abstract

The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and 222Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background (∼ 17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected 222Rn activity concentration in XENONnT is determined to be 4.2 (-0.7+0.5) μ Bq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system.

Original languageEnglish
Article number599
JournalEuropean Physical Journal C
Volume82
Issue number7
DOIs
StatePublished - Jul 2022

All Science Journal Classification (ASJC) codes

  • Engineering (miscellaneous)
  • Physics and Astronomy (miscellaneous)

Fingerprint

Dive into the research topics of 'Material radiopurity control in the XENONnT experiment'. Together they form a unique fingerprint.

Cite this