Mass-fabrication compatible mechanism for converting in-plane to out-of-plane motion

Inbar Hotzen, Orna Ternyak, Shai Shmulevich, David Elata

Research output: Contribution to journalConference articlepeer-review

Abstract

We present a mechanism that converts in-plane to out-of-plane motion, which is fully compatible with standard mass-fabrication methods. The mechanism harnesses the well-established in-plane actuation achieved by comb-drives, and converts it to out-of-plane motion. The motion conversion ratio is constant (i.e. linear conversion), and it can be easily tuned by adding or subtracting modular elements, in an otherwise unchanged design planform. We experimentally demonstrate the linearity of the mechanism, and use dedicated test devices to show the tunability of the conversion ratio. With a different test device, we demonstrate parallel out-of-plane motion of a flat stage. The measurements of this device show good agreement with model predictions.

Original languageEnglish
Article number7051104
Pages (from-to)897-900
Number of pages4
JournalProceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS)
Volume2015-February
Issue numberFebruary
DOIs
StatePublished - 26 Feb 2015
Event2015 28th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2015 - Estoril, Portugal
Duration: 18 Jan 201522 Jan 2015

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Mechanical Engineering
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Mass-fabrication compatible mechanism for converting in-plane to out-of-plane motion'. Together they form a unique fingerprint.

Cite this