MAPS-X: Explainable Multi-Robot Motion Planning via Segmentation

Justin Kottinger, Shaull Almagor, Morteza Lahijanian

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Traditional multi-robot motion planning (MMP) focuses on computing trajectories for multiple robots acting in an environment, such that the robots do not collide when the trajectories are taken simultaneously. In safety-critical applications, a human supervisor may want to verify that the plan is indeed collision-free. In this work, we propose a notion of explanation for a plan of MMP, based on visualization of the plan as a short sequence of images representing time segments, where in each time segment the trajectories of the agents are disjoint, clearly illustrating the safety of the plan. We show that standard notions of optimality (e.g., makespan) may create conflict with short explanations. Thus, we propose meta-algorithms, namely multi-agent plan segmenting-X (MAPS-X) and its lazy variant, that can be plugged on existing centralized sampling-based tree planners X to produce plans with good explanations using a desirable number of images. We demonstrate the efficacy of this explanation-planning scheme and extensively evaluate the performance of MAPS-X and its lazy variant in various environments and agent dynamics.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Pages7994-8000
Number of pages7
ISBN (Electronic)9781728190778
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Robotics and Automation, ICRA 2021 - Xi'an, China
Duration: 30 May 20215 Jun 2021

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2021-May

Conference

Conference2021 IEEE International Conference on Robotics and Automation, ICRA 2021
Country/TerritoryChina
CityXi'an
Period30/05/215/06/21

All Science Journal Classification (ASJC) codes

  • Software
  • Artificial Intelligence
  • Electrical and Electronic Engineering
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'MAPS-X: Explainable Multi-Robot Motion Planning via Segmentation'. Together they form a unique fingerprint.

Cite this