Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato

Michael Alonge, Xingang Wang, Matthias Benoit, Sebastian Soyk, Lara Pereira, Lei Zhang, Hamsini Suresh, Srividya Ramakrishnan, Florian Maumus, Danielle Ciren, Yuval Levy, Tom Hai Harel, Gili Shalev-Schlosser, Ziva Amsellem, Hamid Razifard, Ana L. Caicedo, Denise M. Tieman, Harry Klee, Melanie Kirsche, Sergey AganezovT. Rhyker Ranallo-Benavidez, Zachary H. Lemmon, Jennifer Kim, Gina Robitaille, Melissa Kramer, Sara Goodwin, W. Richard McCombie, Samuel Hutton, Joyce Van Eck, Jesse Gillis, Yuval Eshed, Fritz J. Sedlazeck, Esther van der Knaap, Michael C. Schatz, Zachary B. Lippman

Research output: Contribution to journalArticlepeer-review

Abstract

Structural variants (SVs) underlie important crop improvement and domestication traits. However, resolving the extent, diversity, and quantitative impact of SVs has been challenging. We used long-read nanopore sequencing to capture 238,490 SVs in 100 diverse tomato lines. This panSV genome, along with 14 new reference assemblies, revealed large-scale intermixing of diverse genotypes, as well as thousands of SVs intersecting genes and cis-regulatory regions. Hundreds of SV-gene pairs exhibit subtle and significant expression changes, which could broadly influence quantitative trait variation. By combining quantitative genetics with genome editing, we show how multiple SVs that changed gene dosage and expression levels modified fruit flavor, size, and production. In the last example, higher order epistasis among four SVs affecting three related transcription factors allowed introduction of an important harvesting trait in modern tomato. Our findings highlight the underexplored role of SVs in genotype-to-phenotype relationships and their widespread importance and utility in crop improvement.

Original languageEnglish
Pages (from-to)145-161.e23
Number of pages17
JournalCell
Volume182
Issue number1
Early online date17 Jun 2020
DOIs
StatePublished - 9 Jul 2020

All Science Journal Classification (ASJC) codes

  • General Biochemistry,Genetics and Molecular Biology

Fingerprint

Dive into the research topics of 'Major Impacts of Widespread Structural Variation on Gene Expression and Crop Improvement in Tomato'. Together they form a unique fingerprint.

Cite this