Abstract
This paper reports circular spectropolarimetry and X-ray observations of several polluted white dwarfs including WD1145+017, with the aim to constrain the behaviour of disc material and instantaneous accretion rates in these evolved planetary systems. Two stars with previously observed Zeeman splitting, WD0322-019 and WD2105-820, are detected above 5s and 〈Bz〉> 1 kG, while WD1145+017, WD1929+011, and WD2326+049 yield (null) detections below this minimum level of confidence. For these latter three stars, high-resolution spectra and atmospheric modelling are used to obtain limits on magnetic field strengths via the absence of Zeeman splitting, finding B* < 20 kG based on data with resolving power R ≈ 40 000. An analytical framework is presented for bulk Earth composition material falling on to the magnetic polar regions of white dwarfs, where X-rays and cyclotron radiation may contribute to accretion luminosity. This analysis is applied to X-ray data for WD1145+017, WD1729+371, and WD2326+049, and the upper bound count rates are modelled with spectra for a range of plasma kT = 1-10 keV in both the magnetic and non-magnetic accretion regimes. The results for all three stars are consistent with a typical dusty white dwarf in a steady state at 108-109 g s-1. In particular, the non-magnetic limits for WD1145+017 are found to be well below previous estimates of up to 1012 g s-1, and likely below 1010 g s-1, thus suggesting the star-disc system may be average in its evolutionary state, and only special in viewing geometry.
Original language | English |
---|---|
Pages (from-to) | 947-960 |
Number of pages | 14 |
Journal | MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY |
Volume | 474 |
Issue number | 1 |
DOIs | |
State | Published - Feb 2018 |
Externally published | Yes |
Keywords
- Circumstellar matter
- Planetary systems
- Stars: magnetic field
- White dwarfs
- X-rays: stars
All Science Journal Classification (ASJC) codes
- Astronomy and Astrophysics
- Space and Planetary Science