Machine learning and LHC event generation

Anja Butter, Tilman Plehn, Steffen Schumann, Simon Badger, Sascha Caron, Kyle Cranmer, Francesco Armando Di Bello, Etienne Dreyer, Stefano Forte, Dorival Goncalves, Eilam Gross, Theo Heimel, Gudrun Heinrich, Lukas Heinrich, Alexander Held, Stefan Hoche, Jessica N. Howard, Philip Ilten, Joshua Isaacson, Timo JanssenStefan Jones, Marumi Kado, Michael Kagan, Gregor Kasieczka, Felix Kling, Sabine Kraml, Claudius Krause, Frank Krauss, Kevin Kroeninger, Rahool Kumar Barman, Michel Luchmann, Vitaly Magerya, Daniel Maitre, Bogdan Malaescu, Fabio Maltoni, Till Martini, Olivier Mattelaer, Benjamin Nachman, Sebastian Pitz, Juan Rojo, Matthew Schwartz, David Shih, Frank Siegert, Roy Stegeman, Bob Stienen, Jesse Thaler, Rob Verheyen, Daniel Whiteson, Ramon Winerhalder, Jure Zupan

Research output: Contribution to journalArticlepeer-review

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.
Original languageEnglish
Article number079
Number of pages32
JournalSCIPOST PHYSICS
Volume14
Issue number4
DOIs
StatePublished - 21 Apr 2023

Fingerprint

Dive into the research topics of 'Machine learning and LHC event generation'. Together they form a unique fingerprint.

Cite this