Luminescent solar power - Quantum separation between free-energy and heat for cost-effective base-load solar energy generation

Shimry Haviv, Natali Revivo, Nimrod Kruger, Carmel Rotschild

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The challenge in solar energy today is not the cost of photovoltaics (PVs) electricity generation, already competing with fossil fuel prices, but rather utility-scale energy storage costs. Alternatively, low cost thermal energy storage (TES) exists, but relies on expensive concentrated solar power (CSP). A photovoltaic/thermal (PV/T) technology, able to efficiently unify PV conversion and TES, may usher in the era of efficient base-load renewable power plants. Spectral splitting, one PV/T option where inefficient photons for PV conversion are redirected and thermally utilized, is economically limited by the low yield of each generator. Operating PVs at high temperatures while utilizing the thermalization induced heat for the thermal cycle is another possibility; yet, while conceptually supporting full utilization of solar thermal and free energy, it too is limited by PV efficiency reduction with temperature increase. Here we introduce the concept of luminescence solar power (LSP), where sunlight is absorbed in a photoluminescent (PL) absorber, followed by red-shifted PL emission matched to an adjacent PV band-edge. The PL absorber temperature rises due to thermalization, allowing spatial separation between heat and free-energy, for maximal harvesting of both. We solve the material challenge by experimentally demonstrating tailored luminescence with PL efficiency of up to 90% while operating at 600°C. At such high temperatures, LSP efficiency offers a 50% enhancement over conventional side-by-side PV/CSP efficiency under real-world conditions, leading to a potential reduction in solar energy storage levelized cost of electricity (LCOE) to below 3C/kWh. Such a low LCOE complies with the 2030 SunShot goal, enabling future US solar energy production to reach 50%.

Original languageEnglish
Title of host publication2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
ISBN (Electronic)9781728104690
DOIs
StatePublished - Jun 2019
Event2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019 - Munich, Germany
Duration: 23 Jun 201927 Jun 2019

Publication series

Name2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019

Conference

Conference2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Country/TerritoryGermany
CityMunich
Period23/06/1927/06/19

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Spectroscopy
  • Computer Networks and Communications

Fingerprint

Dive into the research topics of 'Luminescent solar power - Quantum separation between free-energy and heat for cost-effective base-load solar energy generation'. Together they form a unique fingerprint.

Cite this