Abstract
Determinantal point processes (DPPs) have garnered attention as an elegant probabilistic model of set diversity. They are useful for a number of subset selection tasks, including product recommendation. DPPs are parametrized by a positive semi-definite kernel matrix. In this work we present a new method for learning the DPP kernel from observed data using a low-rank factorization of this kernel. We show that this low-rank factorization enables a learning algorithm that is nearly an order of magnitude faster than previous approaches, while also providing for a method for computing product recommendation predictions that is far faster (up to 20x faster or more for large item catalogs) than previous techniques that involve a full-rank DPP kernel. Furthermore, we show that our method provides equivalent or sometimes better test log-likelihood than prior full-rank DPP approaches.
Original language | English |
---|---|
Pages | 1912-1918 |
Number of pages | 7 |
State | Published - 2017 |
Externally published | Yes |
Event | 31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, United States Duration: 4 Feb 2017 → 10 Feb 2017 |
Conference
Conference | 31st AAAI Conference on Artificial Intelligence, AAAI 2017 |
---|---|
Country/Territory | United States |
City | San Francisco |
Period | 4/02/17 → 10/02/17 |
All Science Journal Classification (ASJC) codes
- Artificial Intelligence