TY - JOUR
T1 - Long term ex vivo culturing of Drosophila brain as a method to live image pupal brains
T2 - insights into the cellular mechanisms of neuronal remodeling
AU - Rabinovich, Dana
AU - Mayseless, Oded
AU - Schuldiner, Oren
N1 - NICHD; European Research Council (erc)We thank K. Yaniv and G. Levkowitz for assistance with the mounting setup and two-photon imaging; T. Misgeld for discussions and assistance with image registration; the Schuldiner lab and especially S. Yaniv for discussion and critical reading of the manuscript. The FasII (1D4) antibody monoclonal antibodies were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa. This work was supported European Research Council (erc), consolidator grant "AxonGrowth." The Zeiss LSM710 microscope was purchased with the help of the Adelis foundation. OS is an incumbent of the Rothstein Career Development Chair of Genetic Diseases. We thank K. Yaniv and G. Levkowitz for assistance with the mounting setup and two-photon imaging; T. Misgeld for discussions and assistance with image registration; the Schuldiner lab and especially S. Yaniv for discussion and critical reading of the manuscript. The FasII (1D4) antibody monoclonal antibodies were obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the University of Iowa. This work was supported European Research Council (erc), consolidator grant "AxonGrowth." The Zeiss LSM710 microscope was purchased with the help of the Adelis foundation. OS is an incumbent of the Rothstein Career Development Chair of Genetic Diseases.
PY - 2015/8
Y1 - 2015/8
N2 - Holometabolous insects, including Drosophila melanogaster, undergo complete metamorphosis that includes a pupal stage. During metamorphosis, the Drosophila nervous system undergoes massive remodeling and growth, that include cell death and large-scale axon and synapse elimination as well as neurogenesis, developmental axon regrowth, and formation of new connections. Neuronal remodeling is an essential step in the development of vertebrate and invertebrate nervous systems. Research on the stereotypic remodeling of Drosophila mushroom body (MB) y neurons has contributed to our knowledge of the molecular mechanisms of remodeling but our knowledge of the cellular mechanisms remain poorly understood. A major hurdle in understanding various dynamic processes that occur during metamorphosis is the lack of time-lapse resolution. The pupal case and opaque fat bodies that enwrap the central nervous system (CNS) make live-imaging of the central brain in-vivo impossible. We have established an ex vivo long-term brain culture system that supports the development and neuronal remodeling of pupal brains. By optimizing culture conditions and dissection protocols, we have observed development in culture at kinetics similar to what occurs in vivo. Using this new method, we have obtained the first time-lapse sequence of MB y neurons undergoing remodeling in up to a single cell resolution. We found that axon pruning is initiated by blebbing, followed by one-two nicks that seem to initiate a more widely spread axon fragmentation. As such, we have set up some of the tools and methodologies needed for further exploration of the cellular mechanisms of neuronal remodeling, not limited to the MB. The long-term ex vivo brain culture system that we report here could be used to study dynamic aspects of neurodevelopment of any Drosophila neuron.
AB - Holometabolous insects, including Drosophila melanogaster, undergo complete metamorphosis that includes a pupal stage. During metamorphosis, the Drosophila nervous system undergoes massive remodeling and growth, that include cell death and large-scale axon and synapse elimination as well as neurogenesis, developmental axon regrowth, and formation of new connections. Neuronal remodeling is an essential step in the development of vertebrate and invertebrate nervous systems. Research on the stereotypic remodeling of Drosophila mushroom body (MB) y neurons has contributed to our knowledge of the molecular mechanisms of remodeling but our knowledge of the cellular mechanisms remain poorly understood. A major hurdle in understanding various dynamic processes that occur during metamorphosis is the lack of time-lapse resolution. The pupal case and opaque fat bodies that enwrap the central nervous system (CNS) make live-imaging of the central brain in-vivo impossible. We have established an ex vivo long-term brain culture system that supports the development and neuronal remodeling of pupal brains. By optimizing culture conditions and dissection protocols, we have observed development in culture at kinetics similar to what occurs in vivo. Using this new method, we have obtained the first time-lapse sequence of MB y neurons undergoing remodeling in up to a single cell resolution. We found that axon pruning is initiated by blebbing, followed by one-two nicks that seem to initiate a more widely spread axon fragmentation. As such, we have set up some of the tools and methodologies needed for further exploration of the cellular mechanisms of neuronal remodeling, not limited to the MB. The long-term ex vivo brain culture system that we report here could be used to study dynamic aspects of neurodevelopment of any Drosophila neuron.
U2 - https://doi.org/10.3389/fncel.2015.00327
DO - https://doi.org/10.3389/fncel.2015.00327
M3 - مقالة
SN - 1662-5102
VL - 9
JO - FRONTIERS IN CELLULAR NEUROSCIENCE
JF - FRONTIERS IN CELLULAR NEUROSCIENCE
M1 - 327
ER -