Long-Term context-dependent genetic adaptation of the viral genetic cloud

Tzipi Braun, Antonio V. Bordería, Cyril Barbezange, Marco Vignuzzi, Yoram Louzoun

Research output: Contribution to journalArticlepeer-review

Abstract

Motivation: RNA viruses generate a cloud of genetic variants within each host. This cloud contains high-frequency genotypes, and many rare variants. The dynamics of these variants is crucial to understand viral evolution and their effect on their host. Results: We use an experimental evolution system to show that the genetic cloud surrounding the Coxsackie virus master sequence slowly, but steadily, evolves over hundreds of generations. This movement is determined by strong context-dependent mutations, where the frequency and type of mutations are affected by neighboring positions, even in silent mutations. This context-dependent mutation pattern serves as a spearhead for the viral population's movement within the adaptive landscape and affects which new dominant variants will emerge. The non-local mutation patterns affect the mutated dinucleotide distribution, and eventually lead to a non-uniform dinucleotide distribution in the main viral sequence. We tested these results on other RNA viruses with similar conclusions. Supplementary information: Supplementary data are available at Bioinformatics online.

Original languageEnglish
Article numberbty891
Pages (from-to)1907-1915
Number of pages9
JournalBioinformatics
Volume35
Issue number11
DOIs
StatePublished - 1 Jun 2019

All Science Journal Classification (ASJC) codes

  • Computational Mathematics
  • Molecular Biology
  • Biochemistry
  • Statistics and Probability
  • Computer Science Applications
  • Computational Theory and Mathematics

Fingerprint

Dive into the research topics of 'Long-Term context-dependent genetic adaptation of the viral genetic cloud'. Together they form a unique fingerprint.

Cite this