Long-Range Miniaturized Ceramic RFID Tags

Dmitry Dobrykh, Ildar Yusupov, Sergey Krasikov, Anna Mikhailovskaya, Diana Shakirova, Andrey A. Bogdanov, Alexey Slobozhanyuk, Dmitry Filonov, Pavel Ginzburg

Research output: Contribution to journalArticlepeer-review

Abstract

Radio frequency identification (RFID) is a mature technology that allows contactless reading of data via a wireless communication link. While communication protocols in this field are subject to international regulations, there are plenty of opportunities to improve hardware realization of antenna devices that support this technology. In particular, readout range extension and miniaturization of passive RFID tags is an important challenge with far-reaching goals. Here, we introduce and analyze a new concept of high-permittivity ceramic tag that relies on different physical principles. Instead of using conduction currents in metallic wires to drive electronic chips and generate electromagnetic radiation, high-permittivity components rely on excitation of displacement currents. Those are efficiently converted to actual electric current which drives the memory chip. Practical aspects of this approach are improved robustness to environmental fluctuations, footprint reduction, and readout range extension. In particular, our high-permittivity ceramic (ϵ ∼ 100) elements have demonstrated a 25% reading range improvement in comparison to commercial tags. In case when state-of-the-art readers and RFID chips are used, the readout distances of the developed ceramic tags can reach 22 m. This number can be further extended with improved matching circuits. Miniature RFID tags, capable to establish long-range communication channels, can find use in many applications, including retail, security, Internet of Things, and many others.

Original languageEnglish
Article number9263310
Pages (from-to)3125-3131
Number of pages7
JournalIEEE Transactions on Antennas and Propagation
Volume69
Issue number6
DOIs
StatePublished - Jun 2021

Keywords

  • Ceramic resonators
  • dielectric resonant antennas (DRAs)
  • radio frequency identification (RFID)

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Long-Range Miniaturized Ceramic RFID Tags'. Together they form a unique fingerprint.

Cite this