Abstract
DNA and DNA-based polymers are of interest in molecular electronics because of their versatile and programmable structures. However, transport measurements have produced a range of seemingly contradictory results due to differences in the measured molecules and experimental set-ups, and transporting significant current through individual DNA-based molecules remains a considerable challenge. Here, we report reproducible charge transport in guanine-quadruplex (G4) DNA molecules adsorbed on a mica substrate. Currents ranging from tens of picoamperes to more than 100 pA were measured in the G4-DNA over distances ranging from tens of nanometres to more than 100 nm. Our experimental results, combined with theoretical modelling, suggest that transport occurs via a thermally activated long-range hopping between multi-tetrad segments of DNA. These results could re-ignite interest in DNA-based wires and devices, and in the use of such systems in the development of programmable circuits.
Original language | English |
---|---|
Pages (from-to) | 1040-1046 |
Number of pages | 7 |
Journal | Nature Nanotechnology |
Volume | 9 |
Issue number | 12 |
DOIs | |
State | Published - 1 Jan 2014 |
All Science Journal Classification (ASJC) codes
- Bioengineering
- Atomic and Molecular Physics, and Optics
- Biomedical Engineering
- General Materials Science
- Condensed Matter Physics
- Electrical and Electronic Engineering